某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng),活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置. 若指針停在區(qū)域返券60元;停在區(qū)域返券30元;停在區(qū)域不返券. 例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

(1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

(1) (2)隨機(jī)變量的分布列為: 


0
30
60
90
120






其數(shù)學(xué)期望

解析試題分析:設(shè)指針落在A,B,C區(qū)域分別記為事件A,B,C.
     
(Ⅰ)若返券金額不低于30元,則指針落在A或B區(qū)域.所以       
即消費(fèi)128元的顧客,返券金額不低于30元的概率是.
(Ⅱ)由題意得,該顧客可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次.
隨機(jī)變量的可能值為0,30,60,90,120.  
;           ;
;      ;
   
所以,隨機(jī)變量的分布列為: 


0
30
60
90
120






其數(shù)學(xué)期望
考點(diǎn):互斥事件的概率加法公式;離散型隨機(jī)變量及其分布列.
點(diǎn)評(píng):求離散型隨機(jī)變量期望的步驟:①確定離散型隨機(jī)變量 的取值.②寫出分布列,并檢查分布列的正確與否.③求出期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
公安部發(fā)布酒后駕駛處罰的新規(guī)定(一次性扣罰12分)已于2011年4月1日起正式施行.酒后違法駕駛機(jī)動(dòng)車的行為分成兩個(gè)檔次:“酒后駕車”和“醉酒駕車”,其檢測(cè)標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量(簡(jiǎn)稱血酒含量,單位是毫克/100毫升),當(dāng)時(shí),為酒后駕車;當(dāng)時(shí),為醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動(dòng)中,依法檢查了200輛機(jī)動(dòng)車駕駛員的血酒含量(如下表).

血酒含量
(0,20)
[20,40)
[40,60)
[60,80)
[80,100)
[100,120]
人數(shù)
194
1
2
1
1
1
依據(jù)上述材料回答下列問題:
(1)分別寫出酒后違法駕車發(fā)生的頻率和酒后違法駕車中醉酒駕車的頻率;
(2)從酒后違法駕車的司機(jī)中,抽取2人,請(qǐng)一一列舉出所有的抽取結(jié)果,并求取到的2人中含有醉酒駕車的概率. (酒后駕車的人用大寫字母如表示,醉酒駕車的人用小寫字母如表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市一公交線路某區(qū)間內(nèi)共設(shè)置六個(gè)公交站點(diǎn)(如圖所示),分別為,現(xiàn)在甲、乙兩人同時(shí)從站上車,且他們中的每個(gè)人在站點(diǎn)下車是等可能。

求(1)甲在站點(diǎn)下車的概率
(2)甲、乙兩人不在同一站點(diǎn)下車的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購(gòu)物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(shù)(人)

30
25

10
結(jié)算時(shí)間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中的一次購(gòu)物量超過8件的顧客占55%.
(1)確定的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間的分布列與數(shù)學(xué)期望;
(2)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)共五層,從五層下到四層有3個(gè)出口,從三層下到二層有4個(gè)出口,從二層下到一層有4個(gè)出口,從一層走出商場(chǎng)有6個(gè)出口。安全部門在每層安排了一名警員值班,負(fù)責(zé)該層的安保工作。假設(shè)每名警員到該層各出口處的時(shí)間相等,某罪犯在五樓犯案后,欲逃出商場(chǎng),各警員同時(shí)接到指令,選擇一個(gè)出口進(jìn)行圍堵。逃犯在每層選擇出口是等可能的。已知他被三樓警員抓獲的概率為。
(Ⅰ)問四層下到三層有幾個(gè)出口?
(Ⅱ)天網(wǎng)恢恢,疏而不漏,犯罪嫌疑人最終落入法網(wǎng)。設(shè)抓到逃犯時(shí),他已下了層樓,寫出的分布列,并求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)口袋中有紅球3個(gè),白球4個(gè).
(Ⅰ)從中不放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求恰好第2次中獎(jiǎng)的概率;
(Ⅱ)從中有放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為,兩人間每次射擊是否擊中目標(biāo)互不影響。
(1)求乙至多擊中目標(biāo)2次的概率;
(2)求甲恰好比乙多擊中目標(biāo)1次的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)
(1)在一個(gè)盒子中,放有標(biāo)號(hào)為的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標(biāo)號(hào)分別記為,求||的最大值,并求事件“||取到最大值”的概率;
(2)若利用計(jì)算機(jī)隨機(jī)在[,]上先后取兩個(gè)數(shù)分別記為
求:點(diǎn)在第一象限的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案