已知(x+1)n=a+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a及Sn=a1+a2+a3+…+an
(2)試比較Sn與(n-2)2n+2n2的大小,并說(shuō)明理由.
【答案】分析:(1)通過(guò)對(duì)x取1,2求出a及Sn
(2)先通過(guò)不完全歸納猜出兩者的大小,然后用數(shù)學(xué)歸納法證明.注意三歩:第一步證基礎(chǔ)第二步證遞推關(guān)系第三歩總結(jié).
解答:解:(1)取x=1,則a=2n;
取x=2,則a+a1+a2+a3++an=3n
∴Sn=a1+a2+a3++an=3n-2n;
(2)要比較Sn與(n-2)2n+2n2的大小,
即比較:3n與(n-1)2n+2n2的大小,
當(dāng)n=1時(shí),3n>(n-1)2n+2n2;
當(dāng)n=2,3時(shí),3n<(n-1)2n+2n2;
當(dāng)n=4,5時(shí),3n>(n-1)2n+2n2;(
猜想:當(dāng)n≥4時(shí),3n>(n-1)2n+2n2
下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,n=4時(shí)結(jié)論成立,
假設(shè)當(dāng)n=k,(k≥4)時(shí)結(jié)論成立,即3k>(k-1)2k+2k2,
兩邊同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2]
而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0
∴3k+1>((k+1)-1)2k+1+2(k+1)2
即n=k+1時(shí)結(jié)論也成立,
∴當(dāng)n≥4時(shí),3n>(n-1)2n+2n2成立.
綜上得,
當(dāng)n=1時(shí),Sn>(n-2)2n+2n2;
當(dāng)n=2,3時(shí),Sn<(n-2)2n+2n2;
當(dāng)n≥4,n∈N*時(shí),Sn>(n-2)2n+2n2
點(diǎn)評(píng):本題考查賦值法是求系數(shù)和的重要方法;考查數(shù)學(xué)歸納法證明與自然數(shù)有關(guān)的命題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省撫州市臨川一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知(x+1)n=a+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a及Sn=a1+2a2+3a3+…+nan;
(2)試比較Sn與n3的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江蘇省高考數(shù)學(xué)全真模擬試卷(8)(解析版) 題型:解答題

已知(x+1)n=a+a1(x-1)+a2(x-1)+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a;
(2)試比較Sn與(n-2)2n+2n2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省高考數(shù)學(xué)仿真押題試卷(04)(解析版) 題型:解答題

已知(x+1)n=a+a1(x-1)+a2(x-1)+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a;
(2)試比較Sn與(n-2)2n+2n2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省連云港市贛榆高級(jí)中學(xué)高三3月調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知(x+1)n=a+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a及Sn=a1+a2+a3+…+an;
(2)試比較Sn與(n-2)2n+2n2的大小,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案