15.已知變量x、y呈線性相關(guān)關(guān)系,且回歸直線為$\stackrel{∧}{y}$=3-2x,則x與y是( 。
A.線性正相關(guān)關(guān)系B.線性負相關(guān)關(guān)系
C.非線性相關(guān)D.無法判定其正負相關(guān)關(guān)系

分析 回歸方程為$\stackrel{∧}{y}$=3-2x中x的系數(shù)為-2,可得結(jié)論.

解答 解:回歸方程為$\stackrel{∧}{y}$=3-2x中x的系數(shù)為-2,所以變量x,y是線性負相關(guān)關(guān)系
故選B.

點評 本題考查線性回歸方程,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若x,y滿足約束條件$\left\{\begin{array}{l}2x+y-4≥0\\ 2x-3y-3≤0\\ x-4y+4≤0\end{array}\right.$,則z=x+2y的最小值為( 。
A.$\frac{19}{8}$B.4C.5D.$\frac{46}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{1-a}{2}{x}^{2}+ax-lnx$(a∈R).
(Ⅰ)當a=3,求函數(shù)f(x)的極值;
(Ⅱ)當a>1,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx+(2a-1)x-ax2-a+1,
(1)若$a=\frac{1}{2}$,求f(x)的單調(diào)區(qū)間;
(2)求證:$a≥\frac{1}{2}$時,若x∈[1,+∞),則f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,其中正視圖與俯視圖均是半徑為1的圓,則這個幾何體的表面積是(  )
A.πB.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標系中xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ為參數(shù)),則曲線C是( 。
A.關(guān)于x軸對稱的圖形B.關(guān)于y軸對稱的圖形
C.關(guān)于原點對稱的圖形D.關(guān)于直線y=x對稱的圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面?zhèn)让鍮B1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(I)求證:平面AA1B1B⊥平面BB1C1C;
(II)若三棱柱ABC-A1B1C1的體積為2$\sqrt{3}$,求點A到平面A1B1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體的三視圖,則幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a,b是兩個不相等的正數(shù),且alna+b=blnb+a,則( 。
A.(a-1)(b-1)>0B.0<a+b<2C.ab>1D.0<ab<1

查看答案和解析>>

同步練習(xí)冊答案