分析 求出函數(shù)的解析式,結(jié)合函數(shù)奇偶性,判斷函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性的性質(zhì)將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
解答 解:定義在R上的奇函數(shù)f(x),則f(0)=0,
當(dāng)x>0時(shí),f(x)=log2(x+1)為增函數(shù),且此時(shí)f(x)>0,
當(dāng)x<0,則-x>0,此時(shí)f(-x)=log2(-x+1)=-f(x),
即當(dāng)x<0時(shí),f(x)=-log2(-x+1),此時(shí)函數(shù)為增函數(shù),且f(x)<0,
綜上f(x)在R為增函數(shù),
則不等式f(2x)<f(x-1)等價(jià)為2x<x-1,即x<-1,
故答案為:{x|x<-1}.
點(diǎn)評(píng) 本題主要考查不等式的求解,結(jié)合函數(shù)奇偶性的性質(zhì),判斷函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2000元 | B. | 3200元 | C. | 1800元 | D. | 2100元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m∥α,n⊥β,m⊥n,則α⊥β | B. | 若m?α,n?α,n⊥l,則l⊥α | ||
C. | 若m∥α,n⊥β,α⊥β,則m∥n | D. | 若l⊥α,l⊥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=2-x | B. | f(x)=x2 | C. | f(x)=3-x | D. | f(x)=cosx |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com