設(shè)拋物線C1:y=x2-2x+2與拋物線C2:y=-x2+ax+b在它們一個(gè)交點(diǎn)處的切線互相垂直,求a與b之間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省哈師大附中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

已知橢圓C1(a>b>0)的離心率為,x軸被拋物線C2:y=x2-b截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).

(1)求C1,C2的方程;

(2)設(shè)C2與y軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線l:y=kx與C2相交于A,B兩點(diǎn),直線MA,MB分別與C1相交于D,E.

①證明:·為定值;

②記△MDE的面積為S,試把S表示成k的函數(shù),并求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考總復(fù)習(xí)全解 數(shù)學(xué) 一輪復(fù)習(xí)·必修課程。ㄈ私虒(shí)驗(yàn)版) B版 人教實(shí)驗(yàn)版 B版 題型:044

設(shè)拋物線C1:y=ax2+bx+c經(jīng)過A(-1,2)、B(2,-1)兩點(diǎn),且與y軸相交于點(diǎn)M.

(1)求b和c(用含a的代數(shù)式表示);

(2)求拋物線C2:y=ax2-bx+c-1上橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)的坐標(biāo);

(3)在第(2)小題所求出的點(diǎn)中,有一個(gè)點(diǎn)也在拋物線y=ax2+bx+c上,試判斷直線AM和x軸的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C1x 2=4 y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對(duì)稱.

(Ⅰ) 求曲線C2的方程;

(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過點(diǎn)P作C1的兩條切線PAPB,切點(diǎn)AB,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三第二學(xué)期第一次統(tǒng)考文科數(shù)學(xué) 題型:解答題

(本題滿分15分) 設(shè)拋物線C1:x 2=4 y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對(duì)稱.

(Ⅰ) 求曲線C2的方程;

(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過點(diǎn)P作C1的兩條切線PA,PB,切點(diǎn)A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高三調(diào)研測(cè)試文科數(shù)學(xué)試卷 題型:解答題

(本題滿分15分) 設(shè)拋物線C1x 2=4 y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對(duì)稱.

(Ⅰ) 求曲線C2的方程;

(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過點(diǎn)P作C1的兩條切線PA,PB,切點(diǎn)AB,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案