在等比數(shù)列{an}中,若a5•a6=3,a4+a7=4,則a10=( 。
分析:由已知結(jié)合等比數(shù)列的 性質(zhì)可知a5•a6=a4•a7,從而可求a4,a7,進而可求q3=
a7
a4
,代入,a10=a7q3即可求解
解答:解:a5•a6=3,a4+a7=4,
由等比數(shù)列的 性質(zhì)可知a5•a6=a4•a7
∴a4•a7=3,a4+a7=4,
解可得,
a4=1
a7=3
a4=3
a7=1

當a4=1,a7=3時,q3=
a7
a4
=3,a10=a7q3=9
當a4=3,a7=1時,q3=
a7
a4
=
1
3
a10=a7q3=
1
3

故選C
點評:本題主要考查了等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的簡單應用,屬于基礎試題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的公比大于1,且bn=log3
an
2
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=( 。
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,如果a1+a3=4,a2+a4=8,那么該數(shù)列的前8項和為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a1=1,8a2+a5=0,數(shù)列{
1
an
}
的前n項和為Sn,則S5=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習冊答案