已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段PF2與y軸的交點(diǎn)M滿足,⊙O是以F1F2為直徑的圓,一直線L:y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)A,B
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)當(dāng),且滿足時(shí),求△AOB的面積S的取值范圍.
【答案】分析:(1)由=,知OM是△PF1F2的中位線,由OM⊥F1F2,知PF1⊥F1F2,由此能求出橢圓的標(biāo)準(zhǔn)方程.
(2)由圓O與直線l相切,知,聯(lián)立,得(1+2k2)x2+4kmx+2m2-2=0,由直線l與橢圓交于兩個(gè)不同點(diǎn),得到k2>0,由此能推導(dǎo)出△AOB的面積S的取值范圍.
解答:解:(1)∵=
∴點(diǎn)M是線段PF2的中點(diǎn),
∴OM是△PF1F2的中位線,
又∵OM⊥F1F2,∴PF1⊥F1F2,
,解得a2=2,b2=1,c2=1,
∴橢圓的標(biāo)準(zhǔn)方程為
(2)∵圓O與直線l相切,∴,即m2=k2+1,
聯(lián)立,消去y,得(1+2k2)x2+4kmx+2m2-2=0,
∵直線l與橢圓交于兩個(gè)不同點(diǎn),∴△=(4km)2-4(1+2k2)(2m2-2)>0,
∴k2>0,
設(shè)A(x1,y1),B(x2,y2),則,x1•x2=,
∴y1y2=(kx1+m)(kx2+m)
=
=,
=x1x2+y1y2=,

,
S=S△ABO=
=
=
=,
 設(shè)u=k4+k2,則,S=,u∈[],
∵S關(guān)于u在[,2]單調(diào)遞增,S()=,S(2)=,

點(diǎn)評(píng):本題考查橢圓方程的求法,考查三角形面積取值范圍的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若在橢圓上存在一點(diǎn)P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓的兩個(gè)焦點(diǎn).△F1AB為等邊三角形,A,B是橢圓上兩點(diǎn)且AB過(guò)F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個(gè)焦點(diǎn),點(diǎn)P是橢圓上一個(gè)動(dòng)點(diǎn),那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案