若函數(shù)f(x)=ax3+bx2+cx+d滿足f(0)=f(x1)=f(x2)=0(0<x1<x2),且在區(qū)間[x2,+∞)上單調(diào)遞增,則實(shí)數(shù)b的取值范圍是
b<0
b<0
分析:由已知,0,x1,x2 是函數(shù)f(x)=ax3+bx2+cx+d的三個(gè)零點(diǎn),可以畫出它的大致圖象.分兩種情況.結(jié)合圖象分析求解.
解答:解::∵f(0)=0∴d=0,
∴f(x)=ax3+bx2+cx=x(ax2+bx+c),
又f(x1)=f(x2)=0,且0<x1<x2,∴x1,x2是ax2+bx+c=0兩根,且a≠0.
由韋達(dá)定理x1+x2=-
b
a
>0,①
當(dāng)a>0時(shí),f(x)=ax3+bx2+cx+d的大致圖象為:
由圖,符合f(x)在(x2,+∞)上是增函數(shù),∴a>0滿足條件由①得,b<0
當(dāng)a<0時(shí),f(x)=ax3+bx2+cx+d的大致圖象為:
此時(shí)f(x)在(x2,+∞)上不是增函數(shù),不合題意.

故答案為:b<0
點(diǎn)評(píng):本題主要考查了三次函數(shù)的圖象,及函數(shù)單調(diào)區(qū)間的概念.?dāng)?shù)形結(jié)合的思想方法起到了重要作用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①命題“對(duì)任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點(diǎn)有2個(gè);
③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實(shí)數(shù)a=0;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
x
-x
sinxdx;
⑤若函數(shù)f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為(1,8).
其中真命題的序號(hào)是
①③
①③
(寫出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),其定義域?yàn)镈,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說(shuō)明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)記為y=g(x),g(16)=2,則f(
12
)
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax-2+2010(a>0且a≠1)恒過(guò)一定點(diǎn),此定點(diǎn)坐標(biāo)為
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)若函數(shù)f(x)=ax+b的零點(diǎn)為x=2,則函數(shù)g(x)=bx2-ax的零點(diǎn)是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案