分析 求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,確定函數(shù)的單調(diào)區(qū)間,求出最大值和最小值,得到關(guān)于a的方程,解出即可.
解答 解:y′=f′(x)=3(x+1)(x-1),
∴函數(shù)在在(-∞,-1)遞增,在(-1,1)遞減,在(1,+∞)遞增,
①a=0時(shí),函數(shù)在[-1,1]遞減,
函數(shù)的最大值是f(-1)=2,函數(shù)的最小值是f(1)=-2,
∴f(-1)-f(1)=2-(-2)=4,
故a=0符合題意;
②0<a<2時(shí),1<a+1<3,-1<a-1<1,
∴函數(shù)在[a-1,1]遞減,在(1,a+1]遞增,
函數(shù)的最小值是f(1)=-2,
∵f(a+1)-f(a-1)=(a+1)3-3(a+1)-(a-1)3+3(a-1)=2(3a2-2),
令f(a+1)-f(a-1)=0,
解得a=$\frac{\sqrt{6}}{3}$,
當(dāng)0<a<$\frac{\sqrt{6}}{3}$時(shí),f(a+1)<f(a-1),
∴f(x)max=(a-1)3-3(a-1),
∴f(x)max-f(x)min=(a-1)3-3(a-1)-(-2)=4,
解得a=0或a=3,都舍去
當(dāng)$\frac{\sqrt{6}}{3}$≤a<2時(shí),
∴f(x)max=(a+1)3-3(a+1),
∴f(x)max-f(x)min=(a+1)3-3(a+1)-(-2)=4,
即(a-1)3-3(a-1)-2=0,
解得a=1,a=-2舍去,符合題意.
③a≥2時(shí),f(x)在[a-1,a+1]遞增,
∴f(x)min=f(a-1),f(x)max=f(a+1),
∴(a+1)3-3(a+1)-(a-1)3+3(a-1)=4,
解得:a=±$\sqrt{3}$,舍去,
綜上:a=1或0.
故答案為:1或0
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,分類(lèi)討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com