若
成等差數(shù)列,則有等式
成立,類比上述性質(zhì),相應(yīng)地:若
成等比數(shù)列,則有等式__
_成立。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知首項(xiàng)不為零的數(shù)列
的前
項(xiàng)和為
,若對(duì)任意的
,
,都有
.
(Ⅰ)判斷數(shù)列
是否為等差數(shù)列,并證明你的結(jié)論;
(Ⅱ)若數(shù)列
的第
項(xiàng)
是數(shù)列
的第
項(xiàng)
,且
,
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
給定項(xiàng)數(shù)為m (m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i= 1,2,3,…,m),這樣的數(shù)列叫”0-1數(shù)列”.若存在一個(gè)正整數(shù)k (2≤k≤m – 1),使得數(shù)列{an}中某連續(xù)k項(xiàng)與該數(shù)列中另一個(gè)連續(xù)k項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列{an}是“k階可重復(fù)數(shù)列”.例如數(shù)列{an}:0,1,1,0,1,1,0,因?yàn)?i>a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)?yīng)相等,所以數(shù)列{an}是“4階可重復(fù)數(shù)列”.
(1)已知數(shù)列{bn}:0,0,0,1,1,0,0,1,1,0,則該數(shù)列 “5階可重復(fù)數(shù)列”(填“是”或“不是”);
(2)要使項(xiàng)數(shù)為m的所有”0-1數(shù)列”都為 “2階可重復(fù)數(shù)列”,則m的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若等差數(shù)列
的各項(xiàng)為正,且
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知
,滿足
,
構(gòu)成數(shù)列
。
(1)求數(shù)列
的通項(xiàng)公式; (2)證明:
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知數(shù)列
滿足
,
,
,
記
,則下列結(jié)論正確的是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1,再染2個(gè)偶數(shù)2、4;再染4后面最鄰近的3個(gè)連續(xù)奇數(shù)5、7、9;再染9后面最鄰近的4個(gè)連續(xù)偶數(shù)10、12、14、16;再染此后最鄰近的5個(gè)連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直染下去,得到一紅色子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個(gè)紅色子數(shù)列中,由1開始的第2003個(gè)數(shù)是( )
查看答案和解析>>