(本題滿分14分)
⑴已知cos(x+)=,求cos(-x)+ cos2-x)的值。
⑵已知tanα=2,求
⑴∵cos(x+)=  
∴cos(-x)= cos[π-(x+)]=-cos(x+)=-……………3′
cos(-x)= cos[-(x+)] =sin(x+
∴cos2-x)= sin2(x+)=1-=   …………………………6′
∴cos(-x)+ cos2-x)=-+=…………………………7′
⑵∵tanα=2,∴=2,∴sinα=2cosα ……………………………………9′
∴原式==-……………………………11′
又sin2α+cos2α="1 " ∴cos2α=         
∴原式=-5                         ……………………………………14
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是三角形的一個內(nèi)角,且,則方程表示的曲線是
A.焦點在軸上的雙曲線B.焦點在軸上的橢圓
C.焦點在軸上的雙曲線D.焦點在軸上的橢圓

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則的值為(        )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

 (     )
               
               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則=
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)化簡
(2)化簡

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知銳角α、β滿足sinα=,cosβ=.則cos(α-β)的值.        

查看答案和解析>>

同步練習冊答案