如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點(diǎn),G,H分別是線(xiàn)段ON,CN的中點(diǎn).
(1)證明:直線(xiàn)EG與FH的交點(diǎn)L在橢圓W:上;
(2)設(shè)直線(xiàn)l:與橢圓W:有兩個(gè)不同的交點(diǎn)P,Q,直線(xiàn)l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T,求的最大值及取得最大值時(shí)m的值.

(1)證明見(jiàn)解析;(2)時(shí),取最大值.

解析試題分析:解題思路:(1)由點(diǎn)寫(xiě)出直線(xiàn)方程,聯(lián)立直線(xiàn)方程得到交點(diǎn)坐標(biāo),,驗(yàn)證點(diǎn)滿(mǎn)足橢圓方程;(2)聯(lián)立直線(xiàn)與橢圓的方程,常用“設(shè)而不求”的方法,求弦長(zhǎng),進(jìn)而求所求比值,常用換元法求最值.規(guī)律總結(jié):直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題,一般綜合性強(qiáng).一般思路是聯(lián)立直線(xiàn)與圓錐曲線(xiàn)的方程,整理得關(guān)于的一元二次方程,常用“設(shè)而不求”的方法進(jìn)行求解.
試題解析:(1)點(diǎn),,,
則直線(xiàn)EG:,直線(xiàn)FH:
則直線(xiàn)EG與FH的交點(diǎn),
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/27/5/feoj72.png" style="vertical-align:middle;" />,故直線(xiàn)EG與FH的交點(diǎn)L在橢圓W:上.
(2)聯(lián)立方程組消去y,得,
設(shè),,則,
,且
,由于時(shí),直線(xiàn)l與矩形ABCD的邊AB、CD相交,
所以,則
所以時(shí),取最大值
考點(diǎn):直線(xiàn)與橢圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義:我們把橢圓的焦距與長(zhǎng)軸的長(zhǎng)度之比即,叫做橢圓的離心率.若兩個(gè)橢圓的離心率相同,稱(chēng)這兩個(gè)橢圓相似.
(1)判斷橢圓與橢圓是否相似?并說(shuō)明理由;
(2)若橢圓與橢圓相似,求的值;
(3)設(shè)動(dòng)直線(xiàn)與(2)中的橢圓交于兩點(diǎn),試探究:在橢圓上是否存在異于的定點(diǎn),使得直線(xiàn)的斜率之積為定值?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線(xiàn)與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>0,b>0)的離心率與雙曲線(xiàn)=1的一條漸近線(xiàn)的斜率相等以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(3,0)的直線(xiàn)與橢圓C相交TA,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線(xiàn),在此拋物線(xiàn)上一點(diǎn)到焦點(diǎn)的距離是3.
(1)求此拋物線(xiàn)的方程;
(2)拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于點(diǎn),過(guò)點(diǎn)斜率為的直線(xiàn)與拋物線(xiàn)交于、兩點(diǎn).是否存在這樣的,使得拋物線(xiàn)上總存在點(diǎn)滿(mǎn)足,若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線(xiàn)l:x=4是橢圓C的右準(zhǔn)線(xiàn),F(xiàn)到直線(xiàn)l的距離等于3.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,兩焦點(diǎn)F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點(diǎn)P滿(mǎn)足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C的右頂點(diǎn)為A,直線(xiàn)l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且滿(mǎn)足AM⊥AN.求證:直線(xiàn)l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線(xiàn)相互垂直,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知點(diǎn)是雙曲線(xiàn)上除頂點(diǎn)外的任意一點(diǎn),分別為左、右焦點(diǎn),為半焦距,的內(nèi)切圓與切于點(diǎn),則         .

查看答案和解析>>

同步練習(xí)冊(cè)答案