已知A={x|x2+
5
2
x+1=0},B={y|y=2x+a},若實(shí)數(shù)a可在區(qū)間[-3,3]內(nèi)隨機(jī)取值,則使A∩B≠∅的概率為( 。
分析:x2+
5
2
x+1=0
,解得x,即可得到集合A.對(duì)于集合B:由于實(shí)數(shù)a可在區(qū)間[-3,3]內(nèi)隨機(jī)取值,可得-3<2x+a≤2x+3.再利用A∩B≠∅可得a的取值范圍,再利用幾何概率的計(jì)算公式即可得出.
解答:解:對(duì)于集合A:由x2+
5
2
x+1=0
,解得x=-2或-
1
2

對(duì)于集合B:∵實(shí)數(shù)a可在區(qū)間[-3,3]內(nèi)隨機(jī)取值,
∴-3<2x+a≤2x+3.
使A∩B≠∅的a的取值范圍為[-3,-
1
2
).
∴使A∩B≠∅的概率P=
-
1
2
-(-3)
3-(-3)
=
5
12

故選B.
點(diǎn)評(píng):本題考查了幾何概率的計(jì)算公式、指數(shù)函數(shù)的單調(diào)性、集合的運(yùn)算性質(zhì)等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,則實(shí)數(shù)P的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案