精英家教網 > 高中數學 > 題目詳情

如圖所示,圓C通過不同三點P(k,0)、Q(2,0)、R(0,1),已知圓C在點P的切線斜率為1,試求圓C的方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網某廣場一雕塑造型結構如圖所示,最上層是一呈水平狀態(tài)的圓環(huán),其半徑為2m,通過金屬桿BC,CA1,CA2,CA3支撐在地面B處(BC垂直于水平面),A1,A2,A3是圓環(huán)上的三等分點,圓環(huán)所在的水平面距地面10m,設金屬桿CA1,CA2,CA3所在直線與圓環(huán)所在水平面所成的角都為θ.(圓環(huán)及金屬桿均不計粗細)
(1)當θ的正弦值為多少時,金屬桿BC,CA1,CA2,CA3的總長最短?
(2)為美觀與安全,在圓環(huán)上設置A1,A2,…,An(n≥4)個等分點,并仍按上面方法連接,若還要求金屬桿BC,CA1,CA2,…,CAn的總長最短,對比(1)中C點位置,此時C點將會上移還是下移,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•衡陽模擬)某廣場二雕塑造型結構如圖所示,最上層是呈水平狀態(tài)的圓環(huán)且圓心為O,其半徑為2m,通過金厲桿BC,CA1,CA2,…,CAn支撐在地面B處(BC垂直于水平面).A1,A2,A3,…,An是圓環(huán)上的n等分點,圓環(huán)所在的水平面距地面1Om,設金屬桿CA1,CA2,…,CAn所在直線與圓環(huán)所在水平面所成的角都為θ(圓環(huán)及金厲桿均不計粗細)
(1)當θ為60°且n=3時,求金厲桿BC,CA1,CA2,CA3的總長?
(2)當θ變化,n一定時,為美觀與安全起見,要求金屬桿BC,CA1,CA2,…,CAn的總長最短,此時θ的正弦值是多少?并由此說明n越大,C點的位置將會上移還是下移.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省省城名校高三(上)第二次聯考數學試卷(理科)(解析版) 題型:解答題

某廣場一雕塑造型結構如圖所示,最上層是一呈水平狀態(tài)的圓環(huán),其半徑為2m,通過金屬桿BC,CA1,CA2,CA3支撐在地面B處(BC垂直于水平面),A1,A2,A3是圓環(huán)上的三等分點,圓環(huán)所在的水平面距地面10m,設金屬桿CA1,CA2,CA3所在直線與圓環(huán)所在水平面所成的角都為θ.(圓環(huán)及金屬桿均不計粗細)
(1)當θ的正弦值為多少時,金屬桿BC,CA1,CA2,CA3的總長最短?
(2)為美觀與安全,在圓環(huán)上設置A1,A2,…,An(n≥4)個等分點,并仍按上面方法連接,若還要求金屬桿BC,CA1,CA2,…,CAn的總長最短,對比(1)中C點位置,此時C點將會上移還是下移,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省揚州市高三(上)期末數學試卷(解析版) 題型:解答題

某廣場一雕塑造型結構如圖所示,最上層是一呈水平狀態(tài)的圓環(huán),其半徑為2m,通過金屬桿BC,CA1,CA2,CA3支撐在地面B處(BC垂直于水平面),A1,A2,A3是圓環(huán)上的三等分點,圓環(huán)所在的水平面距地面10m,設金屬桿CA1,CA2,CA3所在直線與圓環(huán)所在水平面所成的角都為θ.(圓環(huán)及金屬桿均不計粗細)
(1)當θ的正弦值為多少時,金屬桿BC,CA1,CA2,CA3的總長最短?
(2)為美觀與安全,在圓環(huán)上設置A1,A2,…,An(n≥4)個等分點,并仍按上面方法連接,若還要求金屬桿BC,CA1,CA2,…,CAn的總長最短,對比(1)中C點位置,此時C點將會上移還是下移,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南省衡陽市高三(下)第一次聯考數學試卷(理科)(解析版) 題型:解答題

某廣場二雕塑造型結構如圖所示,最上層是呈水平狀態(tài)的圓環(huán)且圓心為O,其半徑為2m,通過金厲桿BC,CA1,CA2,…,CAn支撐在地面B處(BC垂直于水平面).A1,A2,A3,…,An是圓環(huán)上的n等分點,圓環(huán)所在的水平面距地面1Om,設金屬桿CA1,CA2,…,CAn所在直線與圓環(huán)所在水平面所成的角都為θ(圓環(huán)及金厲桿均不計粗細)
(1)當θ為60°且n=3時,求金厲桿BC,CA1,CA2,CA3的總長?
(2)當θ變化,n一定時,為美觀與安全起見,要求金屬桿BC,CA1,CA2,…,CAn的總長最短,此時θ的正弦值是多少?并由此說明n越大,C點的位置將會上移還是下移.

查看答案和解析>>

同步練習冊答案