19.命題p:?x∈R,2x2+1<0,則該命題的否定是?x∈R,2x2+1≥0.

分析 直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以,命題p:?x∈R,2x2+1<0,
則該命題的否定是:?x∈R,2x2+1≥0.
故答案為:?x∈R,2x2+1≥0.

點評 本題考查全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow a$=(2,x),$\overrightarrow b$=(1,2),若$\overrightarrow a$∥$\overrightarrow b$,則實數(shù)x的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合M={x|x2-x-2<0},N={x||x|≤2},則(  )
A.M∩N=∅B.M∩N=MC.M∪N=MD.M∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,已知AB=2,BC=1,AC=$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=(  )
A.-4B.-2C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解一元二次不等式
(1)-x2-2x+3>0
(2)x2-3x+5>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{lna-lnx}{x}$在[1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是( 。
A.0<a≤$\frac{1}{e}$B.a$≥\frac{1}{e}$C.$\frac{1}{{e}^{2}}$<a≤$\frac{1}{e}$D.a≥$\frac{1}{{e}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=-$\frac{1}{8}$x2-lnx,設(shè)曲線y=f(x)在x=t(0<t<2)處的切線為l.
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)求切線l的傾斜角θ的取值范圍;
(3)證明:當(dāng)x∈(0,2)時,曲線y=f(x)與l有且僅有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a>b>0,c<d<0,則下列結(jié)論正確的是( 。
A.ac>bdB.ad>bcC.ac<bdD.ad<bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.三棱錐S-ABC中,已知△ABC是以角A為直角的等腰三角形,AB=2,SB=SC=$\sqrt{3}$,SO⊥BC,垂足為O.
(1)證明:SA⊥BC;
(2)若側(cè)面SBC⊥底面ABC,求OS與平面ASB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案