求滿足(
1
4
)x-3
>16的x的取值集合是
 
考點:指數(shù)函數(shù)單調(diào)性的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)y=(
1
4
x的單調(diào)性可判斷x-3<-2,即可求解.
解答: 解:∵(
1
4
)x-3
>16,
(
1
4
)x-3
>(
1
4
-2,
∵根據(jù)函數(shù)y=(
1
4
x的單調(diào)性可判斷
∴x-3<-2,
故:x<1
故答案為:(-∞,1)
點評:本題考查了函數(shù)的單調(diào)性,求解不等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(2a-3)x+a-1,x≥0
ax,
 x<0
是R上的增函數(shù),那么實數(shù)a的取值范圍為( 。
A、(
3
2
,+∞)
B、(1,+∞)
C、[2,+∞)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖示,則下列說法不正確的是( 。
A、ω=2
B、f(x)的圖象關(guān)于點(
12
,0)
成中心對稱
C、k(x)=f(
x
2
-
π
12
)+x在R上單調(diào)遞增
D、已知函數(shù)g(x)=cos(ξx+η)圖象與f(x)的對稱軸完全相同,則ξ=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈[-2,1],則k的值使得過A(1,1)可以作兩條直線與圓 x2+y2+kx-2y-
5
4
k=0相切的概率等于(  )
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點.
(Ⅰ)求證:AE⊥平面PAD;
(Ⅱ)若AB=2,異面直線PB與CD所成角為60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知x-3+1=a(a為常數(shù)),求a2-2ax-3+x-6的值.
(2)求值:log623+log62log618+21+
1
2
log25
log623+(log62)•(log618)+21+
1
2
log25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一枚硬幣任意拋擲三次,事件A=“至少一次出現(xiàn)反面”,事件B=“恰有一次出現(xiàn)正面”,則P(B|A)=( 。
A、
1
7
B、
2
7
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上滿足f(x)=2f(-x)-x2則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A、y=x
B、y=2x-1
C、y=3x-2
D、y=-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈R,x3+x-2≥0的否定是( 。
A、?x∈R,x3+x-2<0
B、?x∈R,x3+x-2≥0
C、?x∈R,x3+x-2<0
D、?x∈R,x3+x-2≠0

查看答案和解析>>

同步練習(xí)冊答案