【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點(diǎn).
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點(diǎn)P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)證明:∵ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD為等邊三角形,
E為AB中點(diǎn),∴DE⊥AB,∴DE⊥CD,
∵ADMN是矩形,∴ND⊥AD,
又平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴ND⊥平面ABCD,∴ND⊥DE,
∵CD∩ND=D,∴DE⊥平面NDC,
∵DE平面MDE,∴平面MDE⊥平面NDC.
因?yàn)槊鍭BM∥面NDC,∴平面DEM⊥平面ABM
(2)解:設(shè)存在P符合題意.
由(Ⅰ)知,DE、DC、DN兩兩垂直,以D為原點(diǎn),建立空間直角坐標(biāo)系D﹣xyz(如圖),
則D(0,0,0),A( ,﹣1,0),E( ,0,0),C(0,2,0),P( ,﹣1,h)(0≤h≤1).
∴ =(0,﹣1,h), =(﹣ ,2,0),設(shè)平面PEC的法向量為 =(x,y,z),
則 令x=2h,則平面PEC的一個(gè)法向量為 =(2h, h, )
取平面ECD的法向量 =(0,0,1),
cos45°= ,解得h= ∈[0,1],
即存在點(diǎn)P,使二面角P﹣EC﹣D的大小為 ,此時(shí)AP= .
【解析】(1)推導(dǎo)出DE⊥CD,ND⊥AD,從而ND⊥DE,進(jìn)而DE⊥平面NDC,由此能證明平面MAE⊥平面NDC.(2)以D為原點(diǎn),建立空間直角坐標(biāo)系D﹣xyz,求出平面PEC的一個(gè)法向量、平面ECD的法向量.利用向量的夾角公式,建立方程,即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識(shí),掌握一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦距為2的橢圓W: =1(a>b>0)的左、右焦點(diǎn)分別為A1 , A2 , 上、下頂點(diǎn)分別為B1 , B2 , 點(diǎn)M(x0 , y0)為橢圓W上不在坐標(biāo)軸上的任意一點(diǎn),且四條直線MA1 , MA2 , MB1 , MB2的斜率之積為 .
(1)求橢圓W的標(biāo)準(zhǔn)方程;
(2)如圖所示,點(diǎn)A,D是橢圓W上兩點(diǎn),點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),AD⊥AB,點(diǎn)C在x軸上,且AC與x軸垂直,求證:B,C,D三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個(gè)花壇中,余下的2種花種在另一個(gè)花壇中,則紅色和紫色的花不在同一花壇的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從月份的天中隨機(jī)挑選了天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
溫差/℃ | |||||
發(fā)芽數(shù)/顆 |
()從這天中任選天,記發(fā)芽的種子數(shù)分別為, ,求事件“, 均不小于”的概率.
()從這天中任選天,若選取的是月日與月日的兩組數(shù)據(jù),請(qǐng)根據(jù)這天中的另天的數(shù)據(jù),求出關(guān)于的線性回歸方程.
()若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的兩組檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)()中所得的線性回歸方程是否可靠?
(參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額的商品后即可抽獎(jiǎng).抽獎(jiǎng)方法是:從裝有2個(gè)紅球A1 ,A2和1個(gè)白球B的甲箱與裝有2個(gè)紅球a1 ,a2和2個(gè)白球b1,b2的乙箱中,各隨機(jī)摸出1個(gè)球.若摸出的2個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng).
(1)用球的標(biāo)號(hào)列出所有可能的摸出結(jié)果;
(2)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多,所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率.你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|(a∈R).
(1)當(dāng)a=﹣1時(shí),求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合 ,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣ax,a是常數(shù).
(Ⅰ)若a=1,且曲線y=f(x)的切線l經(jīng)過(guò)坐標(biāo)原點(diǎn)(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半徑為1的動(dòng)圓與定圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com