用數(shù)學歸納法證明“對于足夠大的自然數(shù)n,總有2n>n2”時,驗證第一步不等式成立所取的第一個值n0最小應當是
 
考點:數(shù)學歸納法
專題:計算題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:根據數(shù)學歸納法的步驟,結合本題的題意,是要驗證n=1,2,3,4,5時,命題是否成立;可得答案.
解答: 解:根據數(shù)學歸納法的步驟,首先要驗證當n取第一個值時命題成立;
結合本題,要驗證n=1時,左=21=2,右=12=1,2n>n2不成立,
n=2時,左=22=4,右=22=4,2n>n2不成立,
n=3時,左=23=8,右=32=9,2n>n2不成立,
n=4時,左=24=16,右=42=16,2n>n2不成立,
n=5時,左=25=32,右=52=25,2n>n2成立,
因為n>5成立,所以2n>n2恒成立.
故答案為:5
點評:本題考查數(shù)學歸納法的運用,解此類問題時,注意n的取值范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=2cos2x+
3
sin2x
(1)求f(x)的最小正周期和最小值;
(2)說明f(x)的圖象是由y=2sin2x經過怎樣的變化得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)-4-i的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2sin(
x
3
+
π
4
)的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=7-
1
x-1
-x(x>1)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義函數(shù)f(x)=[x•[x]],其中[x]表示不超過x的最大整數(shù),如[1.3]=1,[-2.5]=-3,當x∈[0,n)(n∈N*)時,設函數(shù)f(x)的值域為集合A,設A中元素個數(shù)為an,則使
an+49
n
取最小值時,n的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點F為拋物線y2=4x的焦點,A,B,C為拋物線上三點,O為坐標原點,若F是△ABC的重心,△OFA,△OFB,△OFC的面積分別為S1,S2,S3,則S12+S22+S32=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2-2x+my-4=0上兩點M,N關于直線2x+y=0對稱,則圓O的半徑為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(1-2x)10=a0+a1x+…+a10x10,則a0+a1+…+a10=( 。
A、1
B、310
C、-1
D、-310

查看答案和解析>>

同步練習冊答案