3、已知y=f(x)在定義域[1,3]上為單調(diào)減函數(shù),值域?yàn)閇4,7],若它存在反函數(shù),則反函數(shù)在其定義域上( 。
分析:利用互為反函數(shù)的2個(gè)函數(shù)在各自定義區(qū)間上有相同的增減性,以及它們的定義域、值域間的關(guān)系.
解答:解析:互為反函數(shù)的兩個(gè)函數(shù)在各自定義區(qū)間上有相同的增減性,且反函數(shù)的定義域就是原函數(shù)的值域,
反函數(shù)的值域就是原函數(shù)的定義域,
∴f-1(x)的值域是[1,3],
故答案選 C.
答案:C
點(diǎn)評(píng):本題考查互為反函數(shù)的兩個(gè)函數(shù)在各自定義區(qū)間上有相同的增減性,且反函數(shù)的定義域就是原函數(shù)的值域,反函數(shù)的值域就是原函數(shù)的定義域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F(a,0)(a>0),直線l:x=-a,點(diǎn)E是l上的動(dòng)點(diǎn),過(guò)點(diǎn)E垂直于y軸的直線與線段EF的垂直平分線交于點(diǎn)P.
(1)求點(diǎn)P的軌跡M的方程;
(2)若曲線M上在x軸上方的一點(diǎn)A的橫坐標(biāo)為a,過(guò)點(diǎn)A作兩條傾斜角互補(bǔ)的直線,與曲線M的另一個(gè)交點(diǎn)分別為B、C,求證:直線BC的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax+數(shù)學(xué)公式-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年遼寧省鞍山一中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年江蘇省南通市啟東中學(xué)高三(下)5月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案