函數(shù)f(x)=
1-lnx
的定義域是( 。
A、(0.e)
B、(0,e]
C、[e,+∞)
D、(e,+∞)
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)有意義,只需滿足
1-lnx≥0
x>0
,解此不等式可得函數(shù)的定義域
解答: 解:函數(shù)f(x)=
1-lnx
的定義域的定義域?yàn)椋?span id="zz7p57h" class="MathJye">
1-lnx≥0
x>0

解得0<x≤e.
故函數(shù)的定義域?yàn)椋海?,e],
故選:B
點(diǎn)評:本題考查對數(shù)函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“若x2+y2=0,則x=y=0”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1,AB=
3
,BC=1,AA1=2,則該長方體的外接球體積為( 。
A、8π
B、
8
2
3
π
C、
4
3
3
π
D、12
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-3,0),B(3,-3),C(1,3).
(1)求過點(diǎn)C且和直線AB平行的直線l1的方程;
(2)若過B的直線l2和直線BC關(guān)于直線AB對稱,求l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,且雙曲線的離心率等于
5
3
,則該雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校為了對某課題進(jìn)行研究,用分層抽樣方法從三個(gè)年級高一、高二、高三的相關(guān)老師中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).
年級相關(guān)人數(shù)抽取人數(shù)
高一18x
高二362
高三54y
(1)求x,y;
(2)若從高二、高三抽取的人中選2人做專題發(fā)言,求這2人都來自高三的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(x,y)在映射f下所對應(yīng)的元素是(x,x+y),若點(diǎn)(a,b)是點(diǎn)(1,3)在映射f下所對應(yīng)的元素,則a+b等于( 。
A、1B、3C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinxcosx+
1
2
cos2x(a>0)的最大值為1
(1)求a的值和函數(shù)周期;
(2)若f(
a
2
)=
4
5
(α∈(0,
π
3
)),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,向邊長為2的正方形中隨機(jī)投入一粒黃豆,若圓C的方程為(x-2)2+(y-2)2=
9
4
,則黃豆落入陰影部分的概率為( 。
A、
64
B、1-
64
C、1-
π
4
D、
π
4

查看答案和解析>>

同步練習(xí)冊答案