(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.
(I)任意選取3個廠家進(jìn)行抽檢,至少有2個廠家的奶粉檢驗合格有兩種情形;P2=
C103
C123

一是選取抽檢的3個廠家中,恰有2個廠家的奶粉合格,此時的概率為P1=
C210
C12
C312
=
9
22
,
二是選取抽檢的3個廠家的奶粉均合格,此時的概率為P2=
C310
C312
=
12
22

故所求的概率為P=P1+P2=
21
22

(Ⅱ)記A為恰好在第二次抽檢到合格奶粉的事件,此事件說明第一次抽到的是次品,第二次抽到的是合格品,故 P(A)=
2
12
×
10
11
=
10
66
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西柳州市高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西柳州市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.

查看答案和解析>>

同步練習(xí)冊答案