【題目】在以下命題中,不正確的個數(shù)為(  )

,b共線的充要條件;②若,則存在唯一的實數(shù)λ,使λ;③對空間任意一點O和不共線的三點A,B,C,若22,則P,AB,C四點共面;④若{,,}為空間的一個基底,則{,}構(gòu)成空間的另一個基底;⑤ |(·|||·||·||.

A. 2B. 3C. 4D. 5

【答案】C

【解析】

利用不等式||||||等號成立的條件判斷①即可;利用與任意向量共線,來判斷②是否正確;利用共面向量定理判斷③是否正確;根據(jù)不共面的三個向量可構(gòu)成空間一個基底,結(jié)合共面向量定理,用反證法證明即可判斷④;代入向量數(shù)量積公式驗證即可判斷⑤.

對①,∵向量、同向時,,∴不滿足必要性,∴①錯誤;

對②,當(dāng)為零向量,不是零向量時,不存在λ使等式成立,∴②錯誤;

對③,若P,A,B,C四點共面,則存在唯一使得.

,即.

22,所以,方程無解,故③錯誤;

對④,用反證法,若{}不構(gòu)成空間的一個基底;

設(shè)xx1x1x,即,共面,∵{}為空間的一個基底,∴④正確;

對⑤,∵||||×||×|cos,|×||||||||,∴⑤錯誤.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}為遞增的等差數(shù)列,數(shù)列{bn}滿足bnanan+1an+2nN*),設(shè)Sn為數(shù)列{bn}的前n項和,若a2,則當(dāng)Sn取得最小值時n的值為(

A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率是,過點的動直線于橢圓相交于兩點,當(dāng)直線平行于軸時,直線被橢圓截得弦長為

(Ⅰ)求的方程;

(Ⅱ)在上是否存在與點不同的定點,使得直線的傾斜角互補?若存在,求的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由實數(shù)構(gòu)成的等比數(shù)列{an}滿足a1=2,a1+ a3+ a5=42.

(I)求數(shù)列{an}的通項公式;

(II)求a2+ a4+ a6+…+ a2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樹立和踐行綠水青山就是金山銀山,堅持人與自然和諧共生的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,現(xiàn)從參與調(diào)查的人群中隨機選出20人的樣本,并將這20人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示

1)求a的值.

2)根據(jù)頻率分布直方圖,估計參與調(diào)查人群的樣本數(shù)據(jù)的分位數(shù)(保留兩位小數(shù)).

3)若從年齡在的人中隨機抽取兩位,求兩人恰有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)令,試討論的單調(diào)性;

2)若對恒成立,的取值范圍.

【答案】1)見解析(2

【解析】試題分析:(1,對函數(shù)求導(dǎo),研究導(dǎo)函數(shù)的正負得到單調(diào)性即可;(2由條件可知恒成立,變量分離,,求這個函數(shù)的最值即可.

解析:

1)由

當(dāng)時, 恒成立,則單調(diào)遞減;

當(dāng)時, ,令,

.

綜上:當(dāng)時, 單調(diào)遞減,無增區(qū)間;

當(dāng)時,

2)由條件可知恒成立,則

當(dāng)時, 恒成立

當(dāng)時,由.

,因為,所以,

所以,從而可知.

綜上所述: 所求.

點睛:導(dǎo)數(shù)問題經(jīng)常會遇見恒成立的問題:

(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;

2)若 就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為 ,若恒成立;

3)若 恒成立,可轉(zhuǎn)化為(需在同一處取得最值) .

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以為極點, 軸的非負半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·紹興仿真考試)已知數(shù)列{an}的奇數(shù)項依次構(gòu)成公差為d1的等差數(shù)列,偶數(shù)項依次構(gòu)成公差為d2的等差數(shù)列(其中d1,d2為整數(shù)),且對任意nN*,都有an<an1,若a11,a22,且數(shù)列{an}的前10項和S1075,則d1________a8________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求的最大值;

(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的右焦點F作直線交橢圓于M、N兩點,H為線段MN的中點,且OH的斜率為,設(shè)點

求該橢圓的方程;

若點P是橢圓上的動點,求線段PA的中點G的軌跡方程;

過原點的直線交橢圓于B、C兩點,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案