11.已知函數(shù)f(x2-1)的定義域為[0,3],則函數(shù)y=f(x)的定義域為( 。
A.[0,1]B.[2,$\frac{5}{2}$]C.[-1,8]D.(-∞,3)

分析 由函數(shù)f(x2-1)的定義域為[0,3],即0≤x≤3,求得x2-1的范圍得答案.

解答 解:∵函數(shù)f(x2-1)的定義域為[0,3],即0≤x≤3,
∴-1≤x2-1≤8,即函數(shù)y=f(x)的定義域為[-1,8].
故選:C.

點評 本題考查函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問題的求解方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知冪函數(shù)f(x)=(-2m2+m+2)x-2m+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)-2(a-1)x+1在區(qū)間(2,3)上有最小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知a,b,c分別是△ABC的內(nèi)角A,B,C,所對的邊長,且a=c,滿足cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(1)求角B的大;
(2)若點O是△ABC外一點,OA=2OB=4,記∠AOB=α,用含α的三角函數(shù)式表示平面四邊形OACB面積并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知正方形ABCD中,點E在BC上,連接AE,過點B作BF⊥AE于點G,交CD于點F.
(1)如圖1,連接AF,若AB=4,BE=1,求AF的長;
(2)如圖2,連接BD,交AE于點N,連接AC,分別交BD、BF于點O、M,連接GO,求證:GO平分∠AGF;
(3)如圖3,在第(2)問的條件下,連接CG,若CG⊥GO,求證:AG=$\sqrt{2}$CG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知全集U={x∈Z|1≤x≤5},A={1,2,3},B={1,2},則A∩∁UB=(  )
A.{3}B.{1,3}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某公司為了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖和B地區(qū)用戶滿意度評分的頻數(shù)分布表.

B地區(qū)用戶滿意度評分的頻數(shù)分布表
滿意度
評分分組
[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)2814106
(1)作出B地區(qū)用戶滿意度評分的頻率分布直方圖;
(2)通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知實數(shù)x,y滿足$\left\{\begin{array}{l}4x+y-9≥0\\ x-y-1≤0\\ y≤3\end{array}\right.$,則z=x-3y的最大值是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知定義域為R的函數(shù)f(x)滿足:f(x+3)=2f(x+2)-x.若f(1)=2,則f(3)=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.等差數(shù)列{an}中,已知S4=2,S8=7,則a17+a18+a19+a20 的值等于14.

查看答案和解析>>

同步練習冊答案