點(diǎn)P(x,y)為圓(x-1)2+(y-1)2=1上任意一點(diǎn),求
x2+y2
的取值范圍
[
2
-1,
2
+1]
[
2
-1,
2
+1]
分析:(x-1)2+(y-1)2=1表示以(1,1)為圓心,1為半徑的圓,
x2+y2
表示(x,y)與原點(diǎn)的距離;
x2+y2
的最大值為圓心到原點(diǎn)的距離加上半徑,;最小值為圓心到原點(diǎn)的距離減去半徑,由此可確定
x2+y2
的取值范圍.
解答:解:(x-1)2+(y-1)2=1表示以(1,1)為圓心,1為半徑的圓,
x2+y2
表示(x,y)與原點(diǎn)的距離
∵點(diǎn)P是圓(x-1)2+(y-1)2=1上任意一點(diǎn)
x2+y2
的最大值為圓心到原點(diǎn)的距離加上半徑,即
2
+1
;最小值為圓心到原點(diǎn)的距離減去半徑,即
2
-1

x2+y2
的取值范圍是[
2
-1,
2
+1]

故答案為:[
2
-1,
2
+1]
點(diǎn)評(píng):本題考查圓的標(biāo)準(zhǔn)方程,考查兩點(diǎn)間的距離,理解
x2+y2
的幾何意義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:福建省廈門翔安一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:022

點(diǎn)P(x,y)為圓(x-1)2+(y-1)2=1上任意一點(diǎn),求的取值范圍________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣西桂林十八中2010屆高三第四次月考、文科數(shù)學(xué)試卷 題型:013

O為坐標(biāo)原點(diǎn),點(diǎn)P(x,y)在圓x2+y2=9上,點(diǎn)P(2cos,2sin)(∈R)滿足,則

[  ]
A.

37

B.

C.

4

D.

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

O為坐標(biāo)原點(diǎn),點(diǎn)P(x,y)在圓x2+y2=9上,點(diǎn)Q(2cosθ,2sinθ)(θ∈R)滿足=(,-2),則等于(    )

A.37          B.            C.4             D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0114 期末題 題型:解答題

已知P(x,y)為圓C:x2+y2-4x-14y+45=0上的動(dòng)點(diǎn),
(1)求x2+y2+4x-6y+13的最大值和最小值;
(2)求的最大值和最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案