已知各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對任意,有.函數(shù),數(shù)列的首項(xiàng)
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令求證:是等比數(shù)列并求通項(xiàng)公式
(Ⅲ)令,,求數(shù)列的前n項(xiàng)和.
(Ⅰ);(Ⅱ) ;(Ⅲ).
解析試題分析:(Ⅰ)由 ①
得 ② 1分
由②—①,得
即: 2分
由于數(shù)列各項(xiàng)均為正數(shù),
3分
即 數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,
數(shù)列的通項(xiàng)公式是 4分
(Ⅱ)由知,
所以, 5分
有,即, 6分
而,
故是以為首項(xiàng),公比為2的等比數(shù)列. 7分
所以 8分
(Ⅲ), 9分
所以數(shù)列的前n項(xiàng)和
錯(cuò)位相減可得 12分
考點(diǎn):等差數(shù)列、等比數(shù)列的通項(xiàng)公式, “錯(cuò)位相減法”。
點(diǎn)評:中檔題,確定數(shù)列通項(xiàng)公式,往往利用已知條件,建立相關(guān)“元素”的方程組,達(dá)到解題目的。 本題利用前n項(xiàng)和與提醒的關(guān)系,確定數(shù)列的通項(xiàng)公式,也是較為常見的題型!胺纸M求和法”“裂項(xiàng)相消法”“錯(cuò)位相減法”是高考常常考查的數(shù)列求和方法。本題對運(yùn)算能力要求較高。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項(xiàng)和為,
(I)證明:數(shù)列是等比數(shù)列;
(Ⅱ)若,數(shù)列的前n項(xiàng)和為,求不超過的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列和等比數(shù)列中,,,.
(Ⅰ)求數(shù)列及的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng),…的最小值記為Bn,dn=An-Bn.
(I)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對任意n∈N*,),寫出d1,d2,d3,d4的值;
(II)設(shè)d為非負(fù)整數(shù),證明:dn=-d(n=1,2,3…)的充分必要條件為{an}為公差為d的等差數(shù)列;
(III)證明:若a1=2,dn=1(n=1,2,3…),則{an}的項(xiàng)只能是1或2,且有無窮多項(xiàng)為1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{}的前n 項(xiàng)和為,已知,,成等差數(shù)列。
(1)求{}的公比q; (2)求-=3,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列中,,,等差數(shù)列中,,且。
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是各項(xiàng)為正數(shù)的等比數(shù)列,且a1=1,a2+a3=6,
(1)求該數(shù)列的通項(xiàng)公式
(2)若,求該數(shù)列的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是首項(xiàng)為且公比q不等于1的等比數(shù)列,是其前n項(xiàng)的和,成等差數(shù)列.證明:成等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com