【題目】直線l過定點P(0,1),且與直線l1x3y100,l22xy80分別交于A、B兩點.若線段AB的中點為P,求直線l的方程.

【答案】x4y40

【解析】解法一:設A(x0,y0),由中點公式,有B(x0,2y0),∵Al1上,Bl2上,∴kAP,

故所求直線l的方程為yx1,即x4y40.

解法二:設所求直線l方程為ykx1,

由方程組,

由方程組,

∵AB的中點為P(0,1),,∴k.

故所求直線l的方程為x4y40.

解法三:設A(x1,y1)B(x2,y2)P(0,1)MN的中點,則有代入l2的方程,得2(x1)2y180,即2x1y160.由方程組解得由兩點式可得所求直線l的方程為x4y40.

解法四:同解法一,設A(x0,y0),兩式相減得x04y040,(1)

考察直線x4y40,一方面由(1)A(x0,y0)在該直線上;另一方面P(0,1)也在該直線上,從而直線x4y40過點PA.根據(jù)兩點決定一條直線知,所求直線l的方程為x4y40.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

)判斷函數(shù), 是否是有界函數(shù),請寫出詳細判斷過程.

)試證明:設, ,若 上分別以, 為上界,求證:函數(shù)上以為上界.

)若函數(shù)上是以為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn}的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N* sin

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(已知函數(shù)f(x)= ,則y=f(x)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求與點P(3,5)關于直線l:x-3y+2=0對稱的點P′的坐標.(2)已知直線l:y=-2x+6和點A(1,-1),過點A作直線l1與直線l相交于B點,且|AB|=5,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex
(Ⅰ)證明:當x∈[0,3]時,
(Ⅱ)證明:當x∈[2,3]時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M過點A(1,3),B(4,2),且圓心在直線y=x﹣3上.
(Ⅰ)求圓M的方程;
(Ⅱ)若過點(﹣4,1)的直線l與圓M相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產一種產品的固定成本(即固定投入)為0.5萬元,但每生產一百件這樣的產品,需要增加可變成本(即另增加投入)0.25萬元. 市場對此產品的年需求量為500件,銷售的收入函數(shù)為= (單位:萬元),其中是產品售出的數(shù)量(單位:百件).

(1)該公司這種產品的年產量為百件,生產并銷售這種產品所得到的利潤為當年產量的函數(shù),求;

(2)當年產量是多少時,工廠所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知右焦點為F(c,0)的橢圓M: =1(a>b>0)過點 ,且橢圓M關于直線x=c對稱的圖形過坐標原點.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.

查看答案和解析>>

同步練習冊答案