20.已知圓C經(jīng)過(guò)點(diǎn)A(0,3)和B(3,2)且圓心C在直線y=x上.
(1)求圓C的方程;
(2)求傾斜角為45°且與圓C相切的直線l的方程.

分析 (1)求出圓心坐標(biāo)與半徑,即可求圓C的方程;
(2)設(shè)直線l的方程為y=x+b,由(1)可知圓心C到直線l的距離$d=\frac{{|{1-1+b}|}}{{\sqrt{1+1}}}=\sqrt{5}$,即可求得直線l的方程.

解答 解:(1)依題意易得線段AB的中垂線方程為 y=3x-2.…(3分)
聯(lián)立方程組 $\left\{{\begin{array}{l}{y=x}\\{y=3x-2}\end{array}}\right.$,解得x=y=1
所以圓心 C(1,1),
所以圓 C的方程為(x-1)2+(y-1)2=5.…(6分)
(2)∵直線l的傾斜角為45°
∴k=tan45°=1…(8分)
∴可設(shè)直線l的方程為y=x+b
由(1)可知圓心C到直線l的距離$d=\frac{{|{1-1+b}|}}{{\sqrt{1+1}}}=\sqrt{5}$…(11分)
解得$b=±\sqrt{10}$
∴直線l的方程為$y=x±\sqrt{10}$…(12分)

點(diǎn)評(píng) 本題考查直線與圓的方程,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x2+ax(a>0)在[-1,2]上的最大值為8,函數(shù)g(x)是h(x)=ex的反函數(shù).
(1)求函數(shù)g(f(x))的單調(diào)區(qū)間;
(2)求證:函數(shù)y=f(x)h(x)-$\frac{1}{x}$(x>0)恰有一個(gè)零點(diǎn)x0,且g(x0)<x02h(x0)-1
(參考數(shù)據(jù):e=2.71828…,ln2≈0.693).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.拋物線y2=4x的焦點(diǎn)到雙曲線$\frac{{x}^{2}}{{3}^{\;}}$-y2=1的漸近線的距離是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x+2y-4≤0\\ 3x+y-3≥0\\ x-y-1≤0\end{array}\right.$,則$z=\frac{y}{x+1}$的最大值為(  )
A.$\frac{9}{7}$B.$\frac{1}{3}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.與圓x2+y2+6x+5=0外切,同時(shí)與圓x2+y2-6x-91=0內(nèi)切的圓的圓心在(  )
A.一個(gè)圓上B.一個(gè)橢圓上C.雙曲線的一支上D.一條拋物線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,BC=$\sqrt{2}$,又∠BAC=135°,則該三棱錐外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若雙曲線的頂點(diǎn)為橢圓2x2+y2=2長(zhǎng)軸的端點(diǎn),且雙曲線的離心率與該橢圓的離心率的積為1,則雙曲線的方程是( 。
A.x2-y2=1B.y2-x2=1C.y2-x2=2D.x2-y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若a<b<0,那么下列不等式成立的是( 。
A.ab<b2B.a2<b2C.lg(-ab)<lg(-a2D.2${\;}^{\frac{1}}$<2${\;}^{\frac{1}{a}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,在圓內(nèi)接四邊形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ,則四邊形ABCD周長(zhǎng)的取值范圍為(3+$\sqrt{7}$,3+2$\sqrt{7}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案