1.在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=b2經(jīng)過橢圓$E:\frac{x^2}{4}+\frac{y^2}{b^2}=1$(0<b<2)的焦點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:y=kx+m交橢圓E于P,Q兩點(diǎn),T為弦PQ的中點(diǎn),M(-1,0),N(1,0),記直線TM,TN的斜率分別為k1,k2,當(dāng)2m2-2k2=1時(shí),求k1•k2的值.

分析 (1)橢圓E的焦點(diǎn)在x軸上,圓O:x2+y2=b2經(jīng)過橢圓E的焦點(diǎn),所以橢圓的半焦距c=b,所以2b2=4,即b2=2,即可求出橢圓E的方程;
(2)求出T的坐標(biāo),利用斜率公式,結(jié)合條件,即可求k1•k2的值.

解答 解:(1)因0<b<2,所以橢圓E的焦點(diǎn)在x軸上,
又圓O:x2+y2=b2經(jīng)過橢圓E的焦點(diǎn),所以橢圓的半焦距c=b,…(3分)
所以2b2=4,即b2=2,所以橢圓E的方程為$\frac{x^2}{4}+\frac{y^2}{2}=1$.…(6分)
(2)設(shè)P(x1,y1),Q(x2,y2),T(x0,y0),
聯(lián)立$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{2}=1\\ y=kx+m\end{array}\right.$,消去y,得(1+2k2)x2+4kmx+2m2-4=0,
所以${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}$,又2m2-2k2=1,所以x1+x2=$-\frac{2k}{m}$,
所以${x_0}=-\frac{k}{m}$,${y_0}=m-k•\frac{k}{m}=\frac{1}{2m}$,…(10分)
則${k_1}•{k_2}=\frac{{\frac{1}{2m}}}{{-\frac{k}{m}+1}}•\frac{{\frac{1}{2m}}}{{-\frac{k}{m}-1}}=\frac{1}{{4{k^2}-4{m^2}}}=\frac{1}{{-2(2{m^2}-2{k^2})}}=-\frac{1}{2}$.…(14分)

點(diǎn)評(píng) 本題考查橢圓的方程與性質(zhì),考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a<0,b>0,則下列不等式恒成立的是( 。
A.a2<b2B.$\sqrt{-a}<\sqrt$C.$\frac{1}{a}<\frac{1}$D.$\frac{a}$+$\frac{a}$≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.任意a∈R,曲線y=ex(x2+ax+1-2a)在點(diǎn)P(0,1-2a)處的切線l與圓C:x2+2x+y2-12=0的位置關(guān)系是( 。
A.相交B.相切C.相離D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}是等差數(shù)列,其首項(xiàng)為2,且公差為2,若${b_n}={2^{a_n}}$(n∈N*).
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移φ($0<φ<\frac{π}{2}$)個(gè)單位后,所得函數(shù)為偶函數(shù),則φ=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若實(shí)數(shù)x,y,z滿足x+2y+z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F1,F(xiàn)2分別是雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的兩個(gè)焦點(diǎn),過其中一個(gè)焦點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓內(nèi),則雙曲線離心率的取值范圍是( 。
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某小學(xué)共有學(xué)生2000人,其中一至六年級(jí)的學(xué)生人數(shù)分別為400,400,400,300,300,200.為做好小學(xué)放學(xué)后“快樂30分”活動(dòng),現(xiàn)采用分層抽樣的方法從中抽取容量為200的樣本進(jìn)行調(diào)查,那么應(yīng)抽取一年級(jí)學(xué)生的人數(shù)為( 。
A.120B.40C.30D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓O:x2+y2=16及圓內(nèi)一點(diǎn)F(-3,0),過F任作一條弦AB.
(1)求△AOB面積的最大值及取得最大值時(shí)直線AB的方程;
(2)若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平方線,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案