10、已知f(x)是R上的偶函數(shù),將f(x)的圖象向右平移一個單位后,得到一個奇函數(shù)的圖象,且 f(2)=-2,則f(1)+f(2)+f(3)+…+f(2001)=( 。
分析:由于f(x)是R上的偶函數(shù),所以該函數(shù)有對稱軸x=0,函數(shù)f(x)在右移之前有對稱中心(-1,0),故函數(shù)f(x)存在周期T=4,在利用題中的條件得到函數(shù)在一個周期內(nèi)的數(shù)值,利用周期性即可求解.
解答:解:∵f(x)是R上的偶函數(shù),∴圖象關(guān)于y軸對稱,即該函數(shù)有對稱軸x=0,
又∵將f(x)的圖象向右平移一個單位后,則得到一個奇函數(shù)的圖象,
由于奇函數(shù)的圖象關(guān)于原點對稱,此點是由函數(shù)f(x)的圖象的對稱中心右移一個單位得到
∴函數(shù)f(x)的圖象有對稱中心(-1,0),即f(-1)=0,
因為f(-x)=f(x),f(-x-1)=-f(x-1),
∴f(x+1)=-f(x-1),即f(x+1)=f(x-3),
∴函數(shù)f(x)存在周期T=4,又f(2)=-2,f(-1)=0,
利用條件可以推得:f(-1)=f(1)=0,f(2)=-2,f(3)=f(4-1)=0,
f(-3)=f(3)=0,f(4)=f(0)=2,所以在一個周期中f(1)+f(2)+f(3)+f(4)=0,
所以f(1)+f(2)+f(3)+…+f(2001)=f(0)=0.
故選A.
點評:此題考查了利用函數(shù)的對稱性及奇偶性找到函數(shù)的周期,在利用已知的條件求出函數(shù)值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

14、已知f(x)是R上的偶函數(shù),f(2)=-1,若f(x)的圖象向右平移1個單位長度,得到一個奇函數(shù)的圖象,則f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的偶函數(shù),當x≥0時,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零點,比較f(a),f(-2),f(1.5)的大小,用小于符號連接為
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的偶函數(shù),當x≥0時,f(x)=
x

(1)求當x<0時,f(x)的表達式
(2)判斷f(x)在區(qū)間(0,+∞)的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x-1),若g(-1)=2,則f(2008)的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列四個命題:
①命題“已知f(x)是R上的減函數(shù),若a+b≥0,則f(a)+f(b)≤f(-a)+f(-b)”的逆否命題為真命題;
②若p或q為真命題,則p、q均為真命題;
③若命題p:?x∈R,x2-x+1<0,則?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要條件.
其中正確的是( 。

查看答案和解析>>

同步練習冊答案