已知橢圓=1(a>b>0),點(diǎn)P為其上一點(diǎn),F1、F2為橢圓的焦點(diǎn),∠F1PF2的外角平分線為l,點(diǎn)F2關(guān)于l的對(duì)稱點(diǎn)為Q,F2Q交l于點(diǎn)R.
(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
(2)設(shè)點(diǎn)R形成的曲線為C,直線l: y=k(x+a)與曲線C相交于A、B兩點(diǎn),當(dāng)△AOB的面積取得最大值時(shí),求k的值.
(1) R的軌跡方程為: x2+y2=a2(y≠0) (2)
(1)∵點(diǎn)F2關(guān)于l的對(duì)稱點(diǎn)為Q,連接PQ,
∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|
又因?yàn)?i>l為∠F1PF2外角的平分線,故點(diǎn)F1、P、Q在同一直線上,設(shè)存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).
|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,則(x1+c)2+y12=(2a)2.
又
得x1=2x0-c,y1=2y0。
∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2.
故R的軌跡方程為: x2+y2=a2(y≠0)
(2)如右圖,∵S△AOB=|OA|·|OB|·sinAOB=sinAOB
當(dāng)∠AOB=90°時(shí),S△AOB最大值為a2.
此時(shí)弦心距|OC|=.
在Rt△AOC中,∠AOC=45°,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1 (a>b>0)的左焦點(diǎn)到右準(zhǔn)線的距離為,中心到準(zhǔn)線的距離為,則橢圓的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1 (a>b>0)的兩準(zhǔn)線間的距離為,離心率為,則橢圓的方程為( )
A. +=1 B. +=1
C. +=1 D. +=1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com