在△ABC中,a、b、c分別是角A、B、C的對邊.若a2=b2+c2+bc,a=
3
,則△ABC的外接圓半徑等于
1
1
分析:利用余弦定理表示出cosA,將已知等式變形后代入求出cosA的值,由A為三角形的內(nèi)角,利用同角三角函數(shù)間的基本關系求出sinA的值,再由a的值,利用正弦定理即可求出三角形ABC外接圓的半徑.
解答:解:∵a2=b2+c2+bc,即b2+c2-a2=-bc,
∴cosA=
b2+c2-a2
2bc
=-
1
2

∵A為三角形的內(nèi)角,
∴sinA=
1-cos2A
=
3
2

由正弦定理得:
a
sinA
=2R(R為△ABC的外接圓半徑),
則R=
a
2sinA
=
3
3
2
=1.
故答案為:1
點評:此題考查了正弦、余弦定理,以及同角三角函數(shù)間的基本關系,熟練掌握定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C為三個內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2
;
③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案