【題目】在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是(寫出所有正確命題的編號)
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn);
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn);
③如果直線l經(jīng)過兩個不同的整點(diǎn),則直線l必經(jīng)過無窮多個整點(diǎn);
④直線y=kx+b經(jīng)過無窮多個整點(diǎn)的充分必要條件是:k與b都是有理數(shù);
⑤存在恰經(jīng)過一個整點(diǎn)的直線.

【答案】①③⑤
【解析】解:①令y=x+ ,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn),所以本命題正確;②若k= ,b= ,則直線y= x+ 經(jīng)過(﹣1,0),所以本命題錯誤;
設(shè)y=kx為過原點(diǎn)的直線,若此直線l過不同的整點(diǎn)(x1 , y1)和(x2 , y2),
把兩點(diǎn)代入直線l方程得:y1=kx1 , y2=kx2 ,
兩式相減得:y1﹣y2=k(x1﹣x2),
則(x1﹣x2 , y1﹣y2)也在直線y=kx上且為整點(diǎn),
通過這種方法得到直線l經(jīng)過無窮多個整點(diǎn),則③正確;
④當(dāng)k,b都為有理數(shù)時,y=kx+b可能不經(jīng)過整點(diǎn),例如k= ,b= ,故④不正確;
⑤令直線y= x恰經(jīng)過整點(diǎn)(0,0),所以本命題正確.
綜上,命題正確的序號有:①③⑤.
所以答案是:①③⑤.
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在多面體中,是邊長為2的等邊三角形,的中點(diǎn),

1若平面平面,證明:;

2求證:;

3,求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,射線y=x(x≥0)和y=0(x≥0)上分別依次有點(diǎn)A1、A2 , …,An , …,和點(diǎn)B1 , B2 , …,Bn…,其中 , , .且 , (n=2,3,4…).

(1)用n表示|OAn|及點(diǎn)An的坐標(biāo);
(2)用n表示|BnBn+1|及點(diǎn)Bn的坐標(biāo);
(3)寫出四邊形AnAn+1Bn+1Bn的面積關(guān)于n的表達(dá)式S(n),并求S(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù).

I)若曲線在點(diǎn)處的切線平行于,的值;

II)求函數(shù)的極值;

III)當(dāng),若直線與曲線沒有公共點(diǎn),的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

() 證明:當(dāng),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),當(dāng)時,,則,在上所有零點(diǎn)之和為(

A.7 B.8 C.9 D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n項(xiàng)和,求證 <2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊(duì)參加聽歌猜歌名游戲,每隊(duì)3人.隨機(jī)播放一首歌曲,參賽者開始搶答,每人只有一次搶答機(jī)會(每人搶答機(jī)會均等),答對者為本隊(duì)贏得一分,答錯得零分.假設(shè)甲隊(duì)中每人答對的概率均為 ,乙隊(duì)中3人答對的概率分別為 , ,且各人回答正確與否相互之間沒有影響.
(Ⅰ)若比賽前隨機(jī)從兩隊(duì)的6個選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個隊(duì)的概率;
(Ⅱ)用ξ表示甲隊(duì)的總得分,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)求兩隊(duì)得分之和大于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)對一切實(shí)數(shù)x,y均有f(x+y)﹣f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案