設(shè)拋物線=4y的焦點(diǎn)為F,經(jīng)過點(diǎn)P(1,4)的直線l與拋物線相交于A、B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),則||+||=________________.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖所示,已知直線的斜率為且過點(diǎn),拋物線, 直線與拋物線有兩個(gè)不同的交點(diǎn),是拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn).
(1)求的最小值;
(2)求的取值范圍;
(3)若為坐標(biāo)原點(diǎn),問是否存在點(diǎn),使過點(diǎn)的動(dòng)直線與拋物線交于兩點(diǎn),且以為直徑的圓恰過坐標(biāo)原點(diǎn), 若存在,求出動(dòng)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(、(本題16分)
如圖,有一塊拋物線形狀的鋼板,計(jì)劃將此鋼板切割成等腰梯形的形狀,使得都落在拋物線上,點(diǎn)關(guān)于拋物線的軸對(duì)稱,且,拋物線的頂點(diǎn)到底邊的距離是,記,梯形面積為
(1)以拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),其對(duì)稱軸為軸建立坐標(biāo)系,使拋物線開口向下,求出該拋物線的方程;
(2)求面積關(guān)于的函數(shù)解析式,并寫出其定義域;
(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過拋物線的焦點(diǎn),且以為方向向量的直線的方程是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上與焦點(diǎn)的距離等于9的點(diǎn)的坐標(biāo)是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從拋物線上一點(diǎn)P引拋物線準(zhǔn)線的垂線,垂足為M,且,設(shè)拋物線的焦點(diǎn)為F,則△MPF的面積為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知?jiǎng)訄A圓心在拋物線上,且動(dòng)圓恒與直線相切,則此動(dòng)圓必過定點(diǎn)        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

   (本小題共12分)(注意:在試題卷上作答無效)
已知拋物線上一動(dòng)點(diǎn)P,拋物線內(nèi)一點(diǎn)A(3,2) ,F為焦點(diǎn)且的最小值為.
(1)求拋物線的方程以及使得取最小值時(shí)的P點(diǎn)坐標(biāo);
(2)過(1)中的P點(diǎn)作兩條互相垂直的直線與拋物線分別交于C、D兩點(diǎn),直線CD是否過一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是(   )
A.(1,0)B.(0,1)C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案