函數(shù)y=
1-lnx
的定義域為(  )
A、(0,e]
B、(-∞,e]
C、(0,10]
D、(-∞,10]
考點:函數(shù)的定義域及其求法
專題:
分析:根據(jù)函數(shù)的解析式,列出使解析式有意義的不等式,求出解集即可.
解答: 解:∵函數(shù)y=
1-lnx
,
∴1-lnx≥0,
即lnx≤1;
解得0<x≤e,
∴函數(shù)y的定義域為(0,e].
故選:A.
點評:本題考查了求函數(shù)定義域的問題,解題時應(yīng)根據(jù)函數(shù)的解析式,求出使解析式有意義的不等式的解集,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=logax(a>0,a≠1)在[2,3]中最大值比最小值大1,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-1),
b
=(2,m),若
a
b
,則m=(  )
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{1,2,3}的真子集的個數(shù)有(  )
A、8個B、7個
C、6 個D、5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x-1

(1)證明:函數(shù)在區(qū)間(1,+∞)上為減函數(shù);
(2)求函數(shù)在區(qū)間[2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x的圖象經(jīng)過適當(dāng)變換可以得到y(tǒng)=cos2x的圖象,則這種變換可以是( 。
A、沿x軸向右平移
π
4
個單位
B、沿x軸向左平移
π
3
個單位
C、沿x軸向左平移
π
2
個單位
D、沿x軸向右平移
π
2
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinB,sinA,sinC成等差數(shù)列,且b,a,c成等比數(shù)列,則△ABC的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非空數(shù)集A={a1,a2,a3,…,an}(n∈N*,an)中,所有元素的算術(shù)平均數(shù)記為E(A),即E(A)=
a1+a2+a3+…+an
n
.若非空數(shù)集B滿足下列兩個條件:
①B⊆A;
②E(B)=E(A),則稱B為A的一個“保均值子集”.
據(jù)此,集合{1,2,3,4,5}的“保均值子集”的概率是( 。
A、
7
32
B、
3
16
C、
5
32
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于下列命題:
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②在△ABC中“∠A>∠B”的 充要條件是“sinA>sinB”;
③設(shè)a=sin
2014π
3
,b=cos
2014π
3
,c=tan
2014π
3
,則c>a>b;
④將函數(shù)y=2sin(3x+
π
6
)圖象的橫坐標(biāo)變?yōu)樵瓉淼?倍,再向左平移
π
6
個單位,得到函數(shù)y=2sin(x+
π
3
)圖象.
其中真命題的個數(shù)是( 。
A、4B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案