已知橢圓
x2
9
+
y2
4
=1
的焦點坐標為(  )
A.
13
,0)
B.(±3,0)C.
5
,0)
D.(±2,0)
∵橢圓的標準方程為
x2
9
+
y2
4
=1,
∴a2=9,b2=4,
∴c2=a2-b2=5,且焦點在x軸,
∴橢圓
x2
9
+
y2
4
=1的焦點坐標為:(±
5
,0),
故選:C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
25
+
y2
9
=1上的點到左焦點F1距離的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1、F2分別為橢圓
x2
8
+
y2
4
=1
的左、右焦點,過F1的直線交橢圓于M、N兩點,則△MNF2的周長為( 。
A.8
2
B.4
2
C.8D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設m>0,則橢圓x2+4y2=4m的離心率是( 。
A.
1
2
B.
2
2
C.
3
2
D.與m的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,左、右焦點分別是F1,F(xiàn)2,過點F1的直線l交C于A,B兩點,且△ABF2的周長為4
2
.則橢圓C的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,若存在點P為橢圓上一點,使得∠F1PF2=60°,則橢圓離心率e的取值范圍是(  )
A.
2
2
≤e<1
B.0<e<
2
2
C.
1
2
≤e<1
D.
1
2
≤e<
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓E:
x2
4
+y2=1
,橢圓E的內(nèi)接平行四邊形的一組對邊分別經(jīng)過它的兩個焦點(如圖),則這個平行四邊形面積的最大值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓
x2
2
+y2=1
,則該橢圓的離心率為( 。
A.
1
2
B.
2
2
C.
3
3
D.
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1(-c,0)、F2(c,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,P是以F1F2為直徑的圓與橢圓的一個交點,若∠PF1F2=5∠PF2F1,則橢圓的離心率為(  )
A.
3
2
B.
6
3
C.
2
2
D.
2
3

查看答案和解析>>

同步練習冊答案