【題目】如圖,設(shè)P1,P2,…,P6為單位圓上逆時針均勻分布的六個點(diǎn).現(xiàn)任選其中三個不同點(diǎn)構(gòu)成一個三角形,記該三角形的面積為隨機(jī)變量S.
(1)求S=的概率;
(2)求S的分布列及數(shù)學(xué)期望E(S).
【答案】(1)(2)見解析
【解析】分析:(1)由古典概型的概率計算公式,能求出取出的三角形的面積S=的概率;(2)由題設(shè)條S的所有可能取值為為,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量S的分布列及期望.
詳解:(1)從六個點(diǎn)任選三個不同點(diǎn)構(gòu)成一個三角形共有種不同選法,
其中S=的為有一個角是30°的直角三角形(如△P1P4P5),共6×2=12種,
所以P(S=)==.
(2)S的所有可能取值為,,.
S=的為頂角是120°的等腰三角形(如△P1P2P3),共6種,
所以P(S=)==.
S=的為等邊三角形(如△P1P3P5),共2種,
所以P(S=)==.
又由(1)知P(S=)==,故S的分布列為
S | |||
P |
所以E(S)=×+×+×=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線段上運(yùn)動,設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線的切線經(jīng)過點(diǎn),求的方程;
(2)若方程有兩個不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an=2an﹣1+2n+1(n∈N* , n≥2),a3=27.
(1)求a1 , a2的值;
(2)是否存在一個實(shí)數(shù)t,使得bn= (an+t)(n∈N*),且數(shù)列{bn}為等差數(shù)列?若存在,求出實(shí)數(shù)t;若不存在,請說明理由;
(3)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當(dāng)>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求證: ≤an<an+1≤n+2;
(2)求證: + + +…+ <1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1底面是邊長為1的正方形,高AA1= ,點(diǎn)A是平面α內(nèi)的一個定點(diǎn),AA1與α所成角為 ,點(diǎn)C1在平面α內(nèi)的射影為P,當(dāng)四棱柱ABCD﹣A1B1C1D1按要求運(yùn)動時(允許四棱柱上的點(diǎn)在平面α的同側(cè)或異側(cè)),點(diǎn)P所經(jīng)過的區(qū)域的面積= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2016年“猴”年的到來,某電視臺舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有三個選項(xiàng),問題B有四個選項(xiàng),每題只有一個選項(xiàng)是正確的,正確回答問題A可獲獎金1千元,正確回答問題B可獲獎金2千元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止.假設(shè)某參與者在回答問題前,選擇每道題的每個選項(xiàng)的機(jī)會是等可能的.
(Ⅰ)如果該參與者先回答問題A,求其恰好獲得獎金1千元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值和最小值.
(1)求的值;
(2)設(shè),
證明:對任意實(shí)數(shù),函數(shù)的圖象與直線最多只有一個交點(diǎn);
(3)設(shè),是否存在實(shí)數(shù)m和nm<n,使的定義域和值域分別為,如果存在,求出m和n的值.若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com