9.在等差數(shù)列{an}中,a5=9,且2a3=a2+6,則a1等于( 。
A.-3B.-2C.0D.1

分析 根據(jù)題意,設等差數(shù)列{an}的公差為d,首項為a1,由題意可得a1+4d=9和2(a1+2d)=(a1+d)+6,解可得a1與d的值,即可得答案.

解答 解:根據(jù)題意,設等差數(shù)列{an}的公差為d,首項為a1
若a5=9,則有a1+4d=9,
又由2a3=a2+6,則2(a1+2d)=(a1+d)+6,
解可得d=3,a1=-3;
故選:A.

點評 本題考查等差數(shù)列的通項公式,關鍵是掌握等差數(shù)列的通項公式的形式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知直線λ經(jīng)過P(3,2),并且分別滿足下列條件,求直線λ的方程.
(1)傾斜角是直線x-4y+3=0的傾斜角的2倍;
(2)直線在兩坐標軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,各個頂點圍成的菱形面積為2$\sqrt{3}$.
(1)求C的方程;
(2)過右頂點A的直線l交橢圓C于A,B兩點.
①若|AB|=$\frac{4\sqrt{15}}{7}$,求l的方程;
②點P(0,y0)在線段AB的垂直平分線上,且$\overrightarrow{PA}$$•\overrightarrow{PB}$=3,求y0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow a=(1,\sqrt{3})$,$|{\overrightarrow b}|=4$,且($\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow a$,則$\overrightarrow a$與$\overrightarrow b$的夾角是( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,角A,B,C所對的邊分別是a,b,c,若sinC+sin(B-A)=2sin2A,且 c=2,$∠C=\frac{π}{3}$,則△ABC的面積為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)z滿足($\sqrt{3}$+3i)z=3i,則z等于( 。
A.$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$iB.$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$iC.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.若${(1+x)^6}{(1-2x)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{11}}{x^{11}}$,求
(1)a1+a2+a3+…+a11;
(2)a0+a2+a4+…+a10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.復數(shù)$z=\frac{2+mi}{1+i}(m∈R)$是實數(shù),則m=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{32}{3}$B.$\frac{50}{3}$C.$\frac{64}{3}$D.$\frac{80}{3}$

查看答案和解析>>

同步練習冊答案