已知函數(shù)
(Ⅰ)設(shè)圖象的一條對稱軸,求的值;
(Ⅱ)求使函數(shù)上是增函數(shù)的的最大值.
(Ⅰ) 當(dāng)k為偶數(shù)時,;當(dāng)k為奇數(shù)時, (Ⅱ)
:(Ⅰ)由題設(shè)知是函數(shù)圖象的一條對稱軸, 所以,
當(dāng)k為偶數(shù)時,;
當(dāng)k為奇數(shù)時,
(Ⅱ)因?yàn)?img width=267 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/32/256232.gif">
當(dāng),
因?yàn)?img width=111 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/35/256235.gif">上是增函數(shù),且
所以
即 所以的最大值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012屆廣東省潮汕兩市名校高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分14分)
已知函數(shù)將的圖象向右平移2個單位,得到的圖象.
(1)求函數(shù)的解析式;
(2) 若函數(shù)與函數(shù)的圖象關(guān)于直線對稱,求函數(shù)的解析式;
(3)設(shè)已知的最小值是,且求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南安陽一中高二第二次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知函數(shù),,設(shè).
(1)求的單調(diào)區(qū)間;
(2)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)的最小值.
(3)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖
象恰好有四個不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期第一次綜合練習(xí)理科數(shù)學(xué) 題型:選擇題
已知函數(shù),.設(shè)是函數(shù)圖象的一條對稱軸,則的值為
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省潮汕兩市名校高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分14分)
已知函數(shù)將的圖象向右平移2個單位,得到的圖象.
(1)求函數(shù)的解析式;
(2) 若函數(shù)與函數(shù)的圖象關(guān)于直線對稱,求函數(shù)的解析式;
(3)設(shè)已知的最小值是,且 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省高二第一學(xué)期期末測試數(shù)學(xué)理卷 題型:解答題
(本小題滿分14分)
已知函數(shù)和的圖象在處的切線互相平行.
(1) 求的值;(4分)
(2)設(shè),當(dāng)時,恒成立,求的取值范圍. (10分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com