如果函數(shù)f(x)對任意的實(shí)數(shù)x,存在常數(shù)M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數(shù)f(x)為有界泛函,下面四個函數(shù):
①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
其中屬于有界泛函的是    
【答案】分析:先把原定義轉(zhuǎn)化為求當(dāng)x≠0時有最大值,當(dāng)x=0時,|f(0)|≤0恒成立問題.
再分別對①②③④四個函數(shù)在x≠0時求最大值,有最大值符合定義,沒最大值就不符合定義.
解答:解;因?yàn)閨f(x)|≤M|x|恒成立 即為當(dāng)x=0時,|f(0)|≤0恒成立,
當(dāng)x≠0時,≤M恒成立,只要有最大值即可.
對于①f(0)=1不滿足,故①不符合
對于②當(dāng)x≠0時,=|x|無最大值,故②不符合
對于③當(dāng)x≠0時,=|sinx+cosx|=|sin(x+)|有最大值,故③符合
對于④當(dāng)x≠0時,=|=|有最大值,故④符合
故答案為:③④
點(diǎn)評:本題是在新定義下考查恒成立問題.關(guān)于新定義型的題,關(guān)鍵是理解定義,并會用定義來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
n
(n∈N*)
.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對定義域內(nèi)的每一個x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對任給的“n階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“n階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對定義域內(nèi)的每一個x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:022

已知函數(shù)y=f(x),設(shè)x0是定義域內(nèi)任一點(diǎn),如果對x0附近的所有點(diǎn)x,都有f(x)<f(x0),則稱函數(shù)f(x)在點(diǎn)x0處取_________,記作_________.并把x0稱為函數(shù)f(x)的一個_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記數(shù)學(xué)公式.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對定義域內(nèi)的每一個x,總有數(shù)學(xué)公式,則稱f(x)為“n階不減函數(shù)”(數(shù)學(xué)公式為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若數(shù)學(xué)公式既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案