【題目】在數(shù)列{an},{bn}中,an=bn+n,bn=﹣an+1.
(1)證明:數(shù)列{an+3bn}是等差數(shù)列.
(2)求數(shù)列的前n項和Sn.
【答案】(1)證明見解析;(2)Sn
【解析】
(1)可將bn=﹣an+1代入an=bn+n計算可得數(shù)列{an}的通項公式,然后根據(jù)bn=﹣an+1可得數(shù)列{bn}的通項公式,即可計算出數(shù)列{an+3bn}的通項公式,再根據(jù)等差數(shù)列的定義法可證明數(shù)列{an+3bn}是等差數(shù)列;
(2)先根據(jù)(1)的結(jié)果計算出數(shù)列的通項公式,然后根據(jù)通項公式的特點可采用錯位相減法計算出前n項和Sn.
(1)證明:由題意,將bn=﹣an+1代入an=bn+n,可得
an=bn+n=﹣an+1+n,即2an=n+1,
∴an,n∈N*,
∴bn=﹣an+11,n∈N*,
∴an+3bn32﹣n,
∵(an+1+3bn+1)﹣(an+3bn)=2﹣(n+1)﹣(2﹣n)=﹣1,
∴數(shù)列{an+3bn}是以﹣1為公差的等差數(shù)列.
(2)由(1)知,,
則Sn,
∴Sn,
兩式相減,可得
Sn
()
,
∴Sn.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公比大于0的等比數(shù)列{an}中,已知a3a5=a4,且a2,3a4,a3成等差數(shù)列.
(1)求{an}的通項公式;
(2)已知Sn=a1a2…an,試問當(dāng)n為何值時,Sn取得最大值,并求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是直角梯形,AB=2CD=2PD=2,PC,且有PD⊥AD,AD⊥CD,AB∥CD.
(1)證明:PD⊥平面ABCD;
(2)若四棱錐P﹣ABCD的體積為,求四棱錐P﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點A是直線上的動點,過作直線,,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)若點,是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,平面平面,,,分別在線段和上,且,是等腰直角三角形.
(1)若,求證:平面.
(2),是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面建成小康社會的決勝階段,讓貧困地區(qū)同全國人民共同進(jìn)入全面小康社會是我們黨的莊嚴(yán)承諾.在“脫真貧、真脫貧”的過程中,精準(zhǔn)扶貧助推社會公平顯得尤其重要.若某農(nóng)村地區(qū)有200戶貧困戶,經(jīng)過一年扶貧后,對該地區(qū)的“精準(zhǔn)扶貧”的成效檢查驗收.從這200戶貧困戶中隨機(jī)抽出50戶,對各戶的人均年收入(單位:千元)進(jìn)行調(diào)查得到如下頻數(shù)表:
人均年收入 | ||||||
頻數(shù) | 2 | 3 | 10 | 20 | 10 | 5 |
若人均年收入在4000元以下的判定為貧困戶,人均年收入在4000元~8000元的判定為脫貧戶,人均年收入達(dá)到8000元的判定為小康戶.
(1)用樣本估計總體,估計該地區(qū)還有多少戶沒有脫貧;
(2)為了了解未脫貧的原因,從抽取的50戶中用分層抽樣的方法抽10戶進(jìn)行調(diào)研.
①貧困戶、脫貧戶、小康戶分別抽到的人數(shù)是多少?
②從被抽到的脫貧戶和小康戶中各選1人做經(jīng)驗介紹,求小康戶中人均年收入最高的一戶被選到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,EA平面ABC,DC∥EA,EA=2DC,F是EB的中點.
(1)求證:DC平面ABC;
(2)求證:DF∥平面ABC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com