19.(文)定義運(yùn)算$|\begin{array}{l}{a}&{c}\\&4ptlp99\end{array}|$=ad-bc,復(fù)數(shù)z滿足$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,且z為純虛數(shù),則實(shí)數(shù)m的值為2.

分析 由$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,得zi-mi=1-2i,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,又已知z為純虛數(shù),得實(shí)部等于0,求解即可得答案.

解答 解:由$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,
得zi-mi=1-2i,即$z=\frac{1-2i+mi}{i}=\frac{-i(1-2i+mi)}{-{i}^{2}}$=-2+m-i,
又z為純虛數(shù),
∴-2+m=0,
∴m=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過△ABC所在平面α外一點(diǎn)P作PO⊥α,垂足為O,連接PA,PB,PC.
①若PA=PB=PC,則點(diǎn)O是P的外心;
②若點(diǎn)P到△ABC三邊所在直線的距離都相等,則點(diǎn)O是△ABC的內(nèi)心;
③若PA⊥PB,PB⊥PC,PA⊥PC,則點(diǎn)O是△ABC的垂心;
④若PA,PB,PC與平面α所成的角都相等,則點(diǎn)O是△ABC的外心;
上面選項(xiàng)中正確的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an},{bn}滿足a1=1,b1=2,an+1=$\sqrt{{a_n}{b_n}}$,bn+1=$\frac{{{a_n}+{b_n}}}{2}$,
(1)求證:當(dāng)n≥2時(shí),an-1≤an≤bn≤bn-1
(2)設(shè)Sn為數(shù)列{|an-bn|}的前n項(xiàng)和,求證:Sn<$\frac{10}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC中,角A、B、C的對(duì)邊分別為a,b,c,若2csinA=atanC,cosB=$\frac{{\sqrt{3}}}{2}$,則角A的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面直角坐標(biāo)系中,雙曲線$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的右焦點(diǎn)為F,一條過原點(diǎn)O且傾斜角為銳角的直線l與雙曲線C交于A,B兩點(diǎn),若△FAB的面積為8$\sqrt{3}$,則直線l的斜率為(  )
A.$\frac{{2\sqrt{13}}}{13}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{{\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.經(jīng)過點(diǎn)M(1,$\frac{\sqrt{3}}{2}$)作直線l交橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1于A、B兩點(diǎn),且M為弦AB的中點(diǎn).
(1)求直線l的方程;
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\sqrt{a{x^2}+2ax+1}$的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍為( 。
A.(0,1)B.[0,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)計(jì)算:0.064${\;}^{-\frac{1}{3}}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}}$+0.25${\;}^{\frac{1}{2}}}$;
(2)計(jì)算$\frac{2lg2+lg3}{{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線的傾斜角α∈[${\frac{π}{4}$,$\frac{3π}{4}}$],則其斜率的取值范圍是(-∞,-1]∪[1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案