分析 (1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表討論能求出f(x)的單調(diào)區(qū)間區(qū)間及極值.
(2)設g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知當a>ln2-1時,g′(x)最小值為g′(ln2)=2(1-ln2+a)>0.于是對任意x∈R,都有g(shù)′(x)>0,所以g(x)在R內(nèi)單調(diào)遞增.由此能夠證明ex>x2-2ax+1.
解答 (1)解:∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是當x變化時,f′(x),f(x)的變化情況如下表:
x | (-∞,ln2) | ln2 | (ln2,+∞) |
f′(x) | - | 0 | + |
f(x) | 單調(diào)遞減 | 2(1-ln2+a) | 單調(diào)遞增 |
點評 本題考查函數(shù)的單調(diào)區(qū)間及極值的求法和不等式的證明,具體涉及到導數(shù)的性質(zhì)、函數(shù)增減區(qū)間的判斷、極值的計算和不等式性質(zhì)的應用.解題時要認真審題,仔細解答.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 該命題是真命題 | |
B. | 該命題是假命題,因為大前提是錯誤的 | |
C. | 該命題是假命題,因為小前提是錯誤的 | |
D. | 該命題是假命題,因為結(jié)論是錯誤的 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{10}}{10}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{(2k-1)π}{4}$,0),k∈Z | B. | $(\frac{2k-1}{2},0),k∈Z$ | C. | ($\frac{2k-1}{4}$,0),k∈Z | D. | ($\frac{(2k-1)π}{2}$,0),k∈Z |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com