10.設a為實數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間與極值;
(2)當x>0時,求證:a>ln2-1是ex>x2-2ax+1的充分不必要條件.

分析 (1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表討論能求出f(x)的單調(diào)區(qū)間區(qū)間及極值.
(2)設g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知當a>ln2-1時,g′(x)最小值為g′(ln2)=2(1-ln2+a)>0.于是對任意x∈R,都有g(shù)′(x)>0,所以g(x)在R內(nèi)單調(diào)遞增.由此能夠證明ex>x2-2ax+1.

解答 (1)解:∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是當x變化時,f′(x),f(x)的變化情況如下表:

x(-∞,ln2)ln2(ln2,+∞)
f′(x)-0+
f(x)單調(diào)遞減2(1-ln2+a)單調(diào)遞增
故f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),
單調(diào)遞增區(qū)間是(ln2,+∞),
f(x)在x=ln2處取得極小值,
極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a),無極大值.
(2)證明:設g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知當a>ln2-1時,
g′(x)最小值為g′(ln2)=2(1-ln2+a)>0.
于是對任意x∈R,都有g(shù)′(x)>0,所以g(x)在R內(nèi)單調(diào)遞增.
于是當a>ln2-1時,對任意x∈(0,+∞),都有g(shù)(x)>g(0).
而g(0)=0,從而對任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故當a>ln2-1且x>0時,ex>x2-2ax+1.

點評 本題考查函數(shù)的單調(diào)區(qū)間及極值的求法和不等式的證明,具體涉及到導數(shù)的性質(zhì)、函數(shù)增減區(qū)間的判斷、極值的計算和不等式性質(zhì)的應用.解題時要認真審題,仔細解答.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2alnx+(a-2)x,a∈R.
(Ⅰ)當a=-1時,求函數(shù)f(x)的極值;
(Ⅱ)當a<0時,討論函數(shù)f(x)單調(diào)性;
(Ⅲ)是否存在實數(shù)a,對任意的m,n∈(0,+∞),且m≠n,有$\frac{f(m)-f(n)}{m-n}$>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.有一段演繹推理:若直線平行于平面,則這條直線平行于平面內(nèi)所有直線;≠已知直線b∥平面α,直線a?平面α;則直線b∥直線a”下列敘述正確的是( 。
A.該命題是真命題
B.該命題是假命題,因為大前提是錯誤的
C.該命題是假命題,因為小前提是錯誤的
D.該命題是假命題,因為結(jié)論是錯誤的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知不等式組$\left\{\begin{array}{l}x+y≥4\\ x-y≥-2\\ x≤2\end{array}\right.$,表示的平面區(qū)域為D,點O(0,0)、A(1,0),若M是D上的動點,則向量$\overrightarrow{OA}$在向量$\overrightarrow{OM}$方向上的投影的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知(x2+2x+3y)5的展開式中x5y2( 。
A.60B.180C.520D.540

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若拋物線y2=2px的焦點與橢圓$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}$=1的右焦點重合,則p的值為( 。
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知角α的終邊經(jīng)過點P($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則cosα的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.樣本數(shù)據(jù)-2,0,6,3,6的眾數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.y=tan(πx+$\frac{π}{4}$)的對稱中心為( 。
A.($\frac{(2k-1)π}{4}$,0),k∈ZB.$(\frac{2k-1}{2},0),k∈Z$C.($\frac{2k-1}{4}$,0),k∈ZD.($\frac{(2k-1)π}{2}$,0),k∈Z

查看答案和解析>>

同步練習冊答案