設x,y滿足約束條件
x≥0
x+2y-3≥0
2x+y-3≤0
,向量
a
=(y,s+x),
b
=(2,-1),且
a
b
,則s的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:根據(jù)數(shù)量積的運算關系,得到2y-s-x=0,即s=-x+2y,利用線性規(guī)劃的知識即可得到結(jié)論.
解答: 解:∵向量
a
=(y,s+x),
b
=(2,-1),且
a
b
,
a
b
=2y-s-x=0,即s=-x+2y,
則y=
1
2
x+
1
2
s
,
作出不等式組對應的平面區(qū)域如圖:
平移直線y=
1
2
x+
1
2
s
,
由圖象可知當直線y=
1
2
x+
1
2
s
經(jīng)過點A時,直線的截距最小,此時s最小,
x+2y-3=0
2x+y-3=0
,解得
x=1
y=1
,
即A(1,1),
此時s=-1+2=1,
故答案為:1
點評:本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,AE⊥平面DEC,四邊形ABCD為正方形,M,N分別是線段BE、DE中點.
(1)求證:MN∥平面ABCD;
(2)若
AE
EC
=
1
3
,求EC與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=2py(p>0)與圓O:x2+y2=4相交于A、B兩點,F(xiàn)為拋物線的焦點,且滿足
OA
+
OB
=2
OF
OA
OB
=-2
(Ⅰ)求拋物線的方程;
(Ⅱ)過點P(t,-1)作拋物線的兩條切線,切點分別為M,N,直線MN與圓O交于C,D兩點,直線PF與圓O交于Q,R兩點,如圖所示,四邊形CRDQ的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1-3an-1=0(n∈N*
(Ⅰ)若存在一個常數(shù)λ,使得數(shù)列{an+λ}為等比數(shù)列,求出λ的值;
(Ⅱ)設a1=
1
2
,數(shù)列{an}的前n和為Sn,求滿足Sn>1090的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知θ∈(
π
2
,π),cosθ=-
4
5
,求sin2θ及cos(θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>1,b>0,若a+b=2,則
1
a-1
+
2
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=1,前n項和為Sn=
n+2
3
an,n∈N*,則通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知θ∈(
π
2
,π),sinθ=
4
5
,則sin(θ+
π
3
)=
 

查看答案和解析>>

同步練習冊答案