(本小題滿分13分)
已知動圓過點,且與圓相內(nèi)切.
(1)求動圓的圓心的軌跡方程;
(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點,D,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
解:(1)圓, 圓心的坐標為,半徑.
∵,
∴點在圓內(nèi).
設(shè)動圓的半徑為,圓心為,依題意得,且,
即. …………(2分)
∴圓心的軌跡是中心在原點,以兩點為焦點,長軸長為的橢圓,設(shè)其方程為
, 則.
∴.
∴所求動圓的圓心的軌跡方程為. …………(4分)
(2)由 消去化簡整理得:.
…………(6分)
設(shè),,則.
△. ① …………(7分)
由 消去化簡整理得:.
…………(9分)
設(shè),則,
△. ② …………(10分)
∵,
∴,即,
∴.
∴或.
解得或.
當時,由①、②得 ,
∵Z,
∴的值為 ,,;
當,由①、②得 ,
∵Z,
∴.
∴滿足條件的直線共有9條 …………(13分)
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com