精英家教網 > 高中數學 > 題目詳情
已知正項數列{an},其前n項和Sn滿足10Sn=an2+5an+6,且a1,a3,a15成等比數列,求數列{an}的通項an
分析:由已知中前n項和Sn滿足10Sn=an2+5an+6,令n=1,我們可以求出a1,根據an=Sn-Sn-1,我可可以得到an與an-1的關系式,結合a1,a3,a15成等比數列,我們分類討論后,即可得到滿足條件的a1及an與an-1的關系,進而求出數列{an}的通項an
解答:解:∵10Sn=an2+5an+6,①
∴10a1=a12+5a1+6,
解之得a1=2或a1=3.
又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得 10an=(an2-an-12)+5(an-an-1),
即(an+an-1)(an-an-1-5)=0
∵an+an-1>0,∴an-an-1=5 (n≥2).
當a1=3時,a3=13,a15=73. a1,a3,a15不成
等比數列∴a1≠3;
當a1=2時,a3=12,a15=72,有 a32=a1a15,
∴a1=2,∴an=5n-3.
點評:本題考查的知識點是數列的通項公式,數列的函數特征,其中在已知中包含有Sn的表達式,求通項an時,an=Sn-Sn-1(n≥2)是最常用的辦法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正項數列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求證:數列{
an
2n+1
}
為等差數列,并求數列{an}的通項an
(2)設bn=
1
an
,求數列{bn}的前n項和為Sn,并求Sn的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:稱
n
a1+a2+…+an
為n個正數a1,a2,…,an的“均倒數”,已知正項數列{an}的前n項的“均倒數”為
1
2n
,則
lim
n→∞
nan
sn
( 。
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列an中,a1=2,點(
an
,an+1)
在函數y=x2+1的圖象上,數列bn中,點(bn,Tn)在直線y=-
1
2
x+3
上,其中Tn是數列bn的前項和.(n∈N+).
(1)求數列an的通項公式;
(2)求數列bn的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數列{bn}為等比數列;
(2)記Tn為數列{
1
log2bn+1log2bn+2
}
的前n項和,是否存在實數a,使得不等式Tn<log0.5(a2-
1
2
a)
對?n∈N+恒成立?若存在,求出實數a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列{an},Sn=
1
8
(an+2)2

(1)求證:{an}是等差數列;
(2)若bn=
1
2
an-30
,求數列{bn}的前n項和.

查看答案和解析>>

同步練習冊答案