下列四個(gè)命題:
①函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)y=tan(
π
4
-2x)
的最小正周期是π;
③函數(shù)y=tan(2x-
π
3
)
的圖象關(guān)于點(diǎn)(-
3
,0)
成中心對稱;
④函數(shù)y=tan(2x-
π
3
)
(-
π
12
,
12
)
上單調(diào)遞增
其中正確的命題個(gè)數(shù)是(  )
分析:利用正切函數(shù)的圖象和性質(zhì)分別判斷.
解答:解:①因?yàn)楹瘮?shù)的定義域?yàn)閧x|x
π
2
+kπ,k∈Z
},所以函數(shù)y=tanx在定義域內(nèi)不單調(diào),所以①錯(cuò)誤.
②由正切函數(shù)的周期公式可知,周期為
π
|-2|
=
π
2
,所以②錯(cuò)誤.
③當(dāng)x=-
3
時(shí),2x-
π
3
=-
3
=-3π
,此時(shí)tan(-3π)=0,所以函數(shù)y=tan(2x-
π
3
)
的圖象關(guān)于點(diǎn)(-
3
,0)
成中心對稱,所以③正確.
④當(dāng)-
π
12
<x<
12
時(shí),-
π
2
<2x-
π
3
π
2
,所以此時(shí)函數(shù)數(shù)y=tan(2x-
π
3
)
單調(diào)遞增,所以④正確.
所以正確的個(gè)數(shù)有2個(gè).
故選B.
點(diǎn)評:本題主要考查正切函數(shù)的圖象和性質(zhì),要求熟練掌握正確函數(shù)性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是R,對任意x∈R,f(x+2)-f(x)=0,當(dāng)x∈[-1,1)時(shí),f(x)=x.關(guān)于函數(shù)f(x)給出下列四個(gè)命題:
①函數(shù)f(x)是奇函數(shù);
②函數(shù)f(x)是周期函數(shù);
③函數(shù)f(x)的全部零點(diǎn)為x=2k,k∈Z;
④當(dāng)x∈[-3,3)時(shí),函數(shù)g(x)=
1x
的圖象與函數(shù)f(x)的圖象有且只有三個(gè)公共點(diǎn).
其中全部真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點(diǎn);
②若f′(x0)=0,則函數(shù)y=f(x)在x=x0處取得極值;
③若m≥-1,則函數(shù)y=log 
12
(x2-2x-m)的值域?yàn)镽;
④已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)f(x)=3x-6的零點(diǎn)是2;
②函數(shù)f(x)=x2+4x+4的零點(diǎn)是-2;
③函數(shù)f(x)=log3(x-1)的零點(diǎn)是1;
④函數(shù)f(x)=2x-1的零點(diǎn)是0.
其中正確的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個(gè)命題:
①函數(shù)y=10-x和函數(shù)y=10x的圖象關(guān)于x軸對稱;
②所有冪函數(shù)的圖象都經(jīng)過點(diǎn)(1,1);
③若實(shí)數(shù)a、b滿足a+b=1,則
1
a
+
4
b
的最小值為9;
④若{an}是首項(xiàng)大于零的等比數(shù)列,則“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的充要條件.
其中真命題的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•許昌三模)有下列四個(gè)命題:
①函數(shù)y=x+
1
4x
(x≠0)的值域是[1,+∞);
②平面內(nèi)的動點(diǎn)P到點(diǎn)F(-2,3)和到直線l:2x+y+1=0的距離相等,則P的軌跡是拋物線;
③直線AB與平面α相交于點(diǎn)B,且AB與α內(nèi)相交于點(diǎn)C的三條互不重合的直線CB、CE、CF所成的角相等,則AB⊥α;
④若f(x)=x2+bx+c(b,c∈R),則f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)].
其中正確的命題的編號是
③④
③④

查看答案和解析>>

同步練習(xí)冊答案