函數(shù)f(x)=loga(2x+3)+2(a>0,且a≠1)的圖象恒過(guò)點(diǎn)(  )
A、(1,2)
B、(-1,2)
C、(1,3)
D、(-1,3)
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由對(duì)數(shù)運(yùn)算知,loga1=0,從而解得.
解答: 解:由題意,令2x+3=1,
則x=-1,y=0+2=2;
故函數(shù)f(x)=loga(2x+3)+2(a>0,且a≠1)的圖象恒過(guò)點(diǎn)(-1,2);
故選B.
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)的性質(zhì)與應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x-
1
x
>0成立的充分不必要條件是( 。
A、x>-1
B、x>l
C、-l<x<0或x>l
D、x<-1或0<x<l

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如下程序框圖中,輸入f0(x)=xex,若輸出的fi(x)是(8+x)ex,則程序框圖中的判斷框應(yīng)填入( 。
A、i≤6B、i≤7
C、i≤8D、i≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)為正的等差數(shù)列{an}的公差為d=1,且
1
a1a2
+
1
a2a3
=
2
3

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:b1=λ,an+1bn+1+anbn=(-1)n+1(n∈N),是否存在實(shí)數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-x2,-1≤x≤2
x-3,2<x≤5

(1)在給定的直角坐標(biāo)系內(nèi)畫(huà)出f(x)的圖象;
(2)根據(jù)函數(shù)圖象寫(xiě)出f(x)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=k,當(dāng)函數(shù)f(x)與函數(shù)g(x)的圖象有兩個(gè)不同的交點(diǎn)時(shí),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(x∈R),當(dāng)x=2時(shí),函數(shù)取得最大值2,其圖象在x軸上截得的線段長(zhǎng)為2,求其解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
cos(x-
π
4
)-
2
sin(x-
π
4
),x∈R.
(1)求f(0)的值;
(2)若f(α)=
2
5
5
,f(β)=
6
5
,-
π
2
<α<0<β<
π
2
,求f(2α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“存在x0∈R,使得2x+5=0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足方程Z2+2=0,則z=( 。
A、±
2
i
B、±
2
C、-
2
i
D、-
2

查看答案和解析>>

同步練習(xí)冊(cè)答案