已知拋物線方程為y2=2px(p>0).
(1)若點(diǎn)在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(2)在(1)的條件下,若過焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列;
(3)對(duì)(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請(qǐng)寫出推廣命題,并給予證明.
說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評(píng)分.
【答案】分析:(1)由在拋物線上,得p=2,由此能導(dǎo)出拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程.
(2)拋物線的方程為y2=4x,過焦點(diǎn)F(1,0)且傾斜角為60°的直線m的方程為,由可得3x2-10x+3=0,解得點(diǎn)A、B的坐標(biāo)為,,由此能導(dǎo)出kMA、kMF、kMB成等差數(shù)列.
(3)①推廣命題:若拋物線的方程為y2=4x,過焦點(diǎn)F的直線m交拋物線于A、B兩點(diǎn),M為拋物線準(zhǔn)線上的一點(diǎn),直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,則kMA、kMF、kMB成等差數(shù)列.再由拋物線的性質(zhì)和韋達(dá)定理進(jìn)行證明.
②推廣命題:若拋物線的方程為y2=2px(p>0),過焦點(diǎn)F的直線m交拋物線于A、B兩點(diǎn),M為拋物線準(zhǔn)線上的一點(diǎn),直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,則kMA、kMF、kMB成等差數(shù)列.再由拋物線的性質(zhì)結(jié)合分類討論思想進(jìn)行證明.
解答:解:(1)∵在拋物線上,由得p=2
∴拋物線的焦點(diǎn)坐標(biāo)為F(1,0),
準(zhǔn)線l的方程為x=-1
(2)證明:∵拋物線的方程為y2=4x,過焦點(diǎn)F(1,0)且傾斜角為60°的直線m的方程為
可得3x2-10x+3=0
解得點(diǎn)A、B的坐標(biāo)為,
∵拋物線的準(zhǔn)線方程為x=-1,設(shè)點(diǎn)M的坐標(biāo)為M(-1,t),
,,

知kMA、kMF、kMB成等差數(shù)列.
(3)本小題可根考生不同的答題情況給予評(píng)分
①推廣命題:若拋物線的方程為y2=4x,過焦點(diǎn)F的直線m交拋物線于A、B兩點(diǎn),M為拋物線準(zhǔn)線上的一點(diǎn),直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,則kMA、kMF、kMB成等差數(shù)列.
證明:
拋物線y2=4x的焦點(diǎn)坐標(biāo)為F(1,0),當(dāng)直線l1平行于y軸時(shí),
由(2)知命題成立.
設(shè)M點(diǎn)坐標(biāo)為M(-1,t)
當(dāng)直線m不平行于y軸時(shí),設(shè)m的方程為y=k(x-1),其與拋物線的交點(diǎn)坐標(biāo)為A(x1,y1)、B(x2,y2),則有,
得ky2-4y-4k=0,即y1y2=-4=,∴kMA+kMB=2kMF,即kMA、kMF、kMB成等差數(shù)列
②推廣命題:若拋物線的方程為y2=2px(p>0),過焦點(diǎn)F的直線m交拋物線于A、B兩點(diǎn),M為拋物線準(zhǔn)線上的一點(diǎn),直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,則kMA、kMF、kMB成等差數(shù)列.
證明:拋物線的焦點(diǎn)F的坐標(biāo)為,準(zhǔn)線方程為,設(shè)M點(diǎn)坐標(biāo)為
設(shè)m與拋物線的交點(diǎn)坐標(biāo)為A(x1,y1)、B(x2,y2),則有,
(ⅰ)當(dāng)直線m平行于y軸時(shí),直線m的方程為,
此時(shí)有,∴y1y2=-p2
(ⅱ)當(dāng)直線m不平行于y軸時(shí),直線m的方程可設(shè)為
∴y1y2=-p2,=
∴kMA+kMB=2kMF,即kMA、kMF、kMB成等差數(shù)列
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與拋物線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=2px(p>0).
(1)若點(diǎn)(2,2
2
)
在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(2)在(1)的條件下,若過焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列;
(3)對(duì)(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請(qǐng)寫出推廣命題,并給予證明.
說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評(píng)分.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=4x,過Q(2,0)作直線l.
①若l與x軸不垂直,交拋物線于A、B兩點(diǎn),是否存在x軸上一定點(diǎn)E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,請(qǐng)說明理由?
②若L與X軸垂直,拋物線的任一切線與y軸和L分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)|MT|為定值,試證之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線方程為y2=8x.直線l1過拋物線的焦點(diǎn)F,且傾斜角為45°,直線l1與拋物線相交于C、D兩點(diǎn),O為原點(diǎn).
(1)寫出直線l1方程
(2)求CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=2px(p>0).
(Ⅰ)若點(diǎn)(2,2
2
)在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(Ⅱ)在(Ⅰ)的條件下,若過焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=4x,過點(diǎn)P(-2,0)的直線AB交拋物線于點(diǎn)A、B,若線段AB的垂直平分線交x軸于點(diǎn)Q(n,0),求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹