已知a>b>0,e1,e2分別是圓錐曲線
x2
a2
+
y2
b2
=1和
x2
a2
-
y2
b2
=1的離心率,設(shè)m=lge1+lge2,則m的取值范圍是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:分別求出e1,e2,利用對(duì)數(shù)的運(yùn)算性質(zhì),即可求得結(jié)論.
解答: 解:由題意,∵a>b>0
∴0<
b
a
<1,e1=
a2-b2
a
,e2=
a2+b2
a

∴0<e1e2<1,
∴m=lge1+lge2=lg(e1e2)<0.
故答案為:(-∞,0).
點(diǎn)評(píng):本題考查橢圓、雙曲線的離心率,考查對(duì)數(shù)的運(yùn)算性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定長(zhǎng)為3的線段AB的兩個(gè)端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),動(dòng)點(diǎn)P滿(mǎn)足
BP
=2
PA

(Ⅰ)求點(diǎn)P的軌跡曲線C的方程;
(Ⅱ)若過(guò)點(diǎn)(1,0)的直線與曲線C交于M、N兩點(diǎn),求
OM
ON
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x=ay2(a>0)的交點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)h,使得對(duì)于任意x∈M(M⊆D),有x+h∈D,且f(x+h)≥f(x),則稱(chēng)f(x)為M上的“h階高調(diào)函數(shù)”.給出如下結(jié)論:
①若函數(shù)f(x)在R上單調(diào)遞增,則存在非零實(shí)數(shù)h使f(x)為R上的“h階高調(diào)函數(shù)”;
②若函數(shù)f(x)為R上的“h階高調(diào)函數(shù)”,則f(x)在R上單調(diào)遞增;
③若函數(shù)f(x)=x2為區(qū)間[-1,+∞)上的“h階高調(diào)函數(shù)”,則h≥2;
④若函數(shù)f(x)在R上的奇函數(shù),且x≥0時(shí),f(x)=|x-1|-1,則f(x)只能是R上的“4階高調(diào)函數(shù)”.
其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|lg(x-2)|,x>2
2x-1,x≤2
,方程f2(x)+mf(x)=0有五個(gè)不同的實(shí)數(shù)解時(shí),m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀框圖填空:若a=0.80.3,b=0.90.3,c=log50.9,則輸出的數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

銳角△ABC的三邊長(zhǎng)度分別是a-1,a,a+1,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{
1
(2n-1)(2n+1)
}的前n項(xiàng)和是Sn=
 
,使Sn<T恒成立的最小正整數(shù)T是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=1-i,則(1+z)•
.
z
=( 。
A、3-iB、3+i
C、1+3iD、3

查看答案和解析>>

同步練習(xí)冊(cè)答案