已知數(shù)列{an}的前n項和為Sn,且a1=1,Sn-1=an-1(n≥2且n∈N*
(1)求數(shù)列{an}的通項公式an;
(2)設(shè)bn=
an+1
(an+1)(an+1+1)
(n∈N*),求數(shù)列{bn}的前n項和Tn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)Sn-1=an-1(n≥2且n∈N*)⇒Sn=an+1-1,兩式相減得
an+1
an
=2,又a1=1,易知數(shù)列{an}是以1為首項,2為公比的等比數(shù)列,從而可求數(shù)列{an}的通項公式an
(2)利用裂項法易知bn=
an+1
(an+1)(an+1+1)
=
2n
(2n-1+1)(2n+1)
=2(
1
2n-1+1
-
1
2n+1
)(n∈N*),從而可求得數(shù)列{bn}的前n項和Tn
解答: 解:(1)∵Sn-1=an-1(n≥2且n∈N*),
∴Sn=an+1-1,
兩式相減得:an=an+1-an
an+1
an
=2,又a1=1,
∴數(shù)列{an}是以1為首項,2為公比的等比數(shù)列,
∴an=2n-1(n∈N*);
(2)∵bn=
an+1
(an+1)(an+1+1)
=
2n
(2n-1+1)(2n+1)
=2(
1
2n-1+1
-
1
2n+1
)(n∈N*),
∴Tn=b1+b2+…+bn=2[(
1
2
-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1+1
-
1
2n+1
)]
=2(
1
2
-
1
2n+1

=1-
2
2n+1
點(diǎn)評:本題考查數(shù)列的求和,著重考查等比關(guān)系的確定及其通項公式的應(yīng)用,突出裂項法求和的考查,考查轉(zhuǎn)化思想與運(yùn)算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程mx2+(2m+1)x+m=0有兩個不相等的實數(shù)根,則m的取值范圍是(  )
A、m<-
1
4
B、m>-
1
4
C、m<-
1
4
且m≠0
D、m>-
1
4
且m≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在某班有
1
4
的學(xué)生數(shù)學(xué)成績優(yōu)秀,如果從班中隨機(jī)地找出5名學(xué)生,那么其中數(shù)學(xué)成績優(yōu)秀的學(xué)生X~B(5,
1
4
),則E(-X)的值為( 。
A、
1
4
B、-
1
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是實系數(shù)一元二次方程ax2+bx+c=0的根,若x1是虛數(shù),
x
2
1
x2
是實數(shù),則s=1+
x1
x2
+(
x1
x2
2+…+(
x1
x2
2012=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過點(diǎn)(5,10)且與原點(diǎn)的距離為5的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
6
)=
1
3
,α∈[0,π],則sinα的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
是兩個不平行的非零向量,并且
a
c
,
b
c
,則向量
c
等于(  )
A、
0
B、
a
C、
b
D、
c
不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題:
①函數(shù)f(x)=lnx2-2的零點(diǎn)個數(shù)是2個;
②cos215°-sin215°=
1
2
;
③一組數(shù)據(jù)ai(i=1,2,3…n)的方差為3,則ai+2(i=1,2,3…n)的方差為5.
④兩個數(shù)列{an}和{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
(n∈N*),則{bn}為等差數(shù)列的充要條件是為{an}等差數(shù)列.正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(2-x),g(x)=log2(2+x),則函數(shù)f(x)-g(x)=
 

查看答案和解析>>

同步練習(xí)冊答案